The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 429-442
Voir la notice de l'article provenant de la source Library of Science
The harmonic index of a graph G is defined as the sum of the weights 2d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic index for unicyclic graphs with given diameter and characterize the corresponding extremal graphs. This answers an unsolved problem of Zhu and Chang [26].
Keywords:
harmonic index, unicyclic graphs, diameter
@article{DMGT_2018_38_2_a6,
author = {Zhong, Lingping},
title = {The {Minimum} {Harmonic} {Index} for {Unicyclic} {Graphs} with {Given} {Diameter}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {429--442},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/}
}
Zhong, Lingping. The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 429-442. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/