The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 429-442

Voir la notice de l'article provenant de la source Library of Science

The harmonic index of a graph G is defined as the sum of the weights 2d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic index for unicyclic graphs with given diameter and characterize the corresponding extremal graphs. This answers an unsolved problem of Zhu and Chang [26].
Keywords: harmonic index, unicyclic graphs, diameter
@article{DMGT_2018_38_2_a6,
     author = {Zhong, Lingping},
     title = {The {Minimum} {Harmonic} {Index} for {Unicyclic} {Graphs} with {Given} {Diameter}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {429--442},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/}
}
TY  - JOUR
AU  - Zhong, Lingping
TI  - The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 429
EP  - 442
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/
LA  - en
ID  - DMGT_2018_38_2_a6
ER  - 
%0 Journal Article
%A Zhong, Lingping
%T The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 429-442
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/
%G en
%F DMGT_2018_38_2_a6
Zhong, Lingping. The Minimum Harmonic Index for Unicyclic Graphs with Given Diameter. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 429-442. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a6/