Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a5, author = {Bodro\v{z}a-Panti\'c, Olga and Kwong, Harris and Doroslova\v{c}ki, Rade and Panti\'c, Milan}, title = {A {Limit} {Conjecture} on the {Number} of {Hamiltonian} {Cycles} on {Thin} {Triangular} {Grid} {Cylinder} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {405--427}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a5/} }
TY - JOUR AU - Bodroža-Pantić, Olga AU - Kwong, Harris AU - Doroslovački, Rade AU - Pantić, Milan TI - A Limit Conjecture on the Number of Hamiltonian Cycles on Thin Triangular Grid Cylinder Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 405 EP - 427 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a5/ LA - en ID - DMGT_2018_38_2_a5 ER -
%0 Journal Article %A Bodroža-Pantić, Olga %A Kwong, Harris %A Doroslovački, Rade %A Pantić, Milan %T A Limit Conjecture on the Number of Hamiltonian Cycles on Thin Triangular Grid Cylinder Graphs %J Discussiones Mathematicae. Graph Theory %D 2018 %P 405-427 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a5/ %G en %F DMGT_2018_38_2_a5
Bodroža-Pantić, Olga; Kwong, Harris; Doroslovački, Rade; Pantić, Milan. A Limit Conjecture on the Number of Hamiltonian Cycles on Thin Triangular Grid Cylinder Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 405-427. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a5/
[1] O. Bodroža-Pantić, B. Pantić, I. Pantić and M. Bodroža-Solarov, Enumeration of Hamiltonian cycles in some grid graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 181–204.
[2] O. Bodroža-Pantić, H. Kwong and M. Pantić, Some new characterizations of Hamiltonian cycles in triangular grid graphs, Discrete Appl. Math. 201 (2016) 1–13. doi:10.1016/j.dam.2015.07.028
[3] O. Bodroža-Pantić, H. Kwong and M. Pantić, A conjecture on the number of Hamiltonian cycles on thin grid cylinder graphs, Discrete Math. Theoret. Comput. Sci. 17 (2015) 219–240.
[4] O. Bodroža-Pantić and R. Tošić, On the number of 2- factors in rectangular lattice graphs, Publ. Inst. Math. (Beograd) (N.S.) 56 (1994) 23–33.
[5] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application (VEB Deutscher Verlag der Wissenschaften, Berlin, 1982).
[6] F.J. Faase, On the number of specific spanning subgraphs of the graphs G × Pn, Ars Combin. 49 (1998) 129–154.
[7] M.J. Golin, Y.C. Leung, Y. Wang and X. Yong, Counting structures in grid-graphs, cylinders and tori using transfer matrices: survey and new results (extended abstract), in: Proceedings of SIAM ALENEX/ANALCO Workshop—Analytic Algorithmics and Combinatorics (Canada, 2005), 250–258.
[8] J.L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A 40 (2007) 14667–14678. doi:10.1088/1751-8113/40/49/003
[9] I. Jensen, Self-avoiding walks and polygons on the triangular lattice, J. Stat. Mech. Theory Exp. (2004) P10008. doi:10.1088/1742-5468/2004/10/P10008
[10] A.M. Karavaev, Kodirovanie sostoyanĭi v metode matricy perenosa dlya podscheta gamil’tonovyh ciklov na pryamougol’nyh reshetkah, cilindrah i torah, Informacionnye Processy 11 (2011) 476–499 (in Russian).
[11] A. Karavaev and S. Perepechko, Counting Hamiltonian cycles on triangular grid graphs, IV International Conference (Kiev, 2012).
[12] B.P. Kitchens, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts (Springer, 1997).
[13] G. Kreweras, Dénombrement des Cycles Hamiltoniens dans un Rectangle Quadrillé, European J. Combin. 13 (1992) 473–467. doi:10.1016/0195-6698(92)90005-K
[14] Y.H.H. Kwong, Enumeration of Hamiltonian cycles in P4 × Pn and P5 × Pn, Ars Combin. 33 (1992) 87–96.
[15] Y.H.H. Kwong and D.G. Rogers, A matrix method for counting Hamiltonian cycles on grid graphs, European J. Combin. 15 (1994) 277–283. doi:10.1006/eujc.1994.1031
[16] M. Peto, T.Z. Sen, R.L. Jernigan and A. Kloczkowski, Generation and enumeration of compact conformations on the two-dimensional triangular and three-dimensional fcc lattices, J. Chem. Phys. 127 (2007) Article 044101.
[17] T.G. Schmalz, G.E. Hite and D.J. Klein, Compact self-avoiding circuits on two dimensional lattice, J. Phys. A 17 (1984) 445–453. doi:10.1088/0305-4470/17/2/029
[18] R.P. Stanley, Enumerative Combinatorics, Vol. I (Cambridge University Press, Cambridge, 2002).
[19] R. Stoyan and V. Strehl, Enumeration of Hamiltonian circuits in rectangular grids, J. Combin. Math. Combin. Comput. 21 (1996) 109–127.
[20] R. Tošić, O. Bodroža, Y.H.H. Kwong and H.J. Straight, On the number of Hamiltonian cycles of P4 × Pn, Indian J. Pure Appl. Math. 21 (1990) 403–409.