A Note on the Ramsey Number of Even Wheels Versus Stars
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 397-404
Voir la notice de l'article provenant de la source Library of Science
For two graphs G_1 and G_2, the Ramsey number R(G_1,G_2) is the smallest integer N, such that for any graph on N vertices, either G contains G_1 or G contains G_2. Let S_n be a star of order n and W_m be a wheel of order m + 1. In this paper, we will show R(W_n, S_n) ≤ 5n//2 − 1, where n ≥ 6 is even. Also, by using this theorem, we conclude that R(W_n, S_n) = 5n//2 − 2 or 5n//2 −1, for n ≥ 6 and even. Finally, we prove that for sufficiently large even n we have R(W_n, S_n) = 5n//2 − 2.
Keywords:
Ramsey number, star, wheel, weakly pancyclic
@article{DMGT_2018_38_2_a4,
author = {Haghi, Sh. and Maimani, H.R.},
title = {A {Note} on the {Ramsey} {Number} of {Even} {Wheels} {Versus} {Stars}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {397--404},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a4/}
}
Haghi, Sh.; Maimani, H.R. A Note on the Ramsey Number of Even Wheels Versus Stars. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 397-404. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a4/