The Complexity of Secure Domination Problem in Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 385-396
Voir la notice de l'article provenant de la source Library of Science
A dominating set of a graph G is a subset D ⊆ V (G) such that every vertex not in D is adjacent to at least one vertex in D. A dominating set S of G is called a secure dominating set if each vertex u ∈ V (G) S has one neighbor v in S such that (S v) ∪ u is a dominating set of G. The secure domination problem is to determine a minimum secure dominating set of G. In this paper, we first show that the decision version of the secure domination problem is NP-complete for star convex bipartite graphs and doubly chordal graphs. We also prove that the secure domination problem cannot be approximated within a factor of (1−ε) ln |V | for any ε gt; 0, unless NP⊆DTIME (|V |O(log log |V|)). Finally, we show that the secure domination problem is APX-complete for bounded degree graphs.
Keywords:
secure domination, star convex bipartite graph, doubly chordal graph, NP-complete, APX-complete
@article{DMGT_2018_38_2_a3,
author = {Wang, Haichao and Zhao, Yancai and Deng, Yunping},
title = {The {Complexity} of {Secure} {Domination} {Problem} in {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {385--396},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a3/}
}
TY - JOUR AU - Wang, Haichao AU - Zhao, Yancai AU - Deng, Yunping TI - The Complexity of Secure Domination Problem in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 385 EP - 396 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a3/ LA - en ID - DMGT_2018_38_2_a3 ER -
Wang, Haichao; Zhao, Yancai; Deng, Yunping. The Complexity of Secure Domination Problem in Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 385-396. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a3/