Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a2, author = {Li, Xueliang and Magnant, Colton and Wei, Meiqin and Zhu, Xiaoyu}, title = {Generalized {Rainbow} {Connection} of {Graphs} and their {Complements}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {371--384}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/} }
TY - JOUR AU - Li, Xueliang AU - Magnant, Colton AU - Wei, Meiqin AU - Zhu, Xiaoyu TI - Generalized Rainbow Connection of Graphs and their Complements JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 371 EP - 384 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/ LA - en ID - DMGT_2018_38_2_a2 ER -
%0 Journal Article %A Li, Xueliang %A Magnant, Colton %A Wei, Meiqin %A Zhu, Xiaoyu %T Generalized Rainbow Connection of Graphs and their Complements %J Discussiones Mathematicae. Graph Theory %D 2018 %P 371-384 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/ %G en %F DMGT_2018_38_2_a2
Li, Xueliang; Magnant, Colton; Wei, Meiqin; Zhu, Xiaoyu. Generalized Rainbow Connection of Graphs and their Complements. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 371-384. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/
[1] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) 189–207.
[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550–2560. doi:10.1016/j.disc.2011.09.003
[3] J.A. Bondy and U.S.R. Murty, Graph Therory (GTM 244, Springer-Verlag, New York, 2008).
[4] G. Chartrand, S. Devereaux and P. Zhang, Color-connected graphs and information-transfer paths, Ars Combin., to appear.
[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[6] S. Devereaux, G.L. Johns and P. Zhang, Color connection in graphs intermediate to proper and rainbow connection, J. Combin. Math. Combin. Comput., to appear.
[7] S. Devereaux and P. Zhang, k-rainbow colorings in graphs, manuscript.
[8] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141–150.
[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is ( at most ) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191. doi:10.1002/jgt.20418
[10] X. Li and C. Magnant, Properly colored notions of connectivity—a dynamic survey, Theory Appl. Graphs 0(1) (2015) Article 2. doi:10.20429/tag.2015.000102
[11] X. Li, C. Magnant, M. Wei and X. Zhu, Distance proper connection of graphs (2016) arXiv:1606.06547 [math.CO]
[12] X. Li and Y. Shi, Rainbow connection in 3- connected graphs, Graphs Combin. 29 (2013) 1471–1475. doi:10.1007/s00373-012-1204-9
[13] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[14] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).