Generalized Rainbow Connection of Graphs and their Complements
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 371-384
Voir la notice de l'article provenant de la source Library of Science
Let G be an edge-colored connected graph. A path P in G is called 𝓁-rainbow if each subpath of length at most 𝓁 + 1 is rainbow. The graph G is called (k, 𝓁 )-rainbow connected if there is an edge-coloring such that every pair of distinct vertices of G is connected by k pairwise internally vertex-disjoint 𝓁-rainbow paths in G. The minimum number of colors needed to make G (k, 𝓁)-rainbow connected is called the (k, 𝓁 )-rainbow connection number of G and denoted by rc_ k,𝓁 (G). In this paper, we first focus on the (1, 2)-rainbow connection number of G depending on some constraints of G. Then, we characterize the graphs of order n with (1, 2)-rainbow connection number n − 1 or n − 2. Using this result, we investigate the Nordhaus-Gaddum-Type problem of (1, 2)-rainbow connection number and prove that rc_1,2(G) + rc_1,2( G ) ≤ n + 2 for connected graphs G and G. The equality holds if and only if G or G is isomorphic to a double star.
Keywords:
ℓ-rainbow path, ( k, ℓ)-rainbow connected, ( k, ℓ)-rainbow connection number
@article{DMGT_2018_38_2_a2,
author = {Li, Xueliang and Magnant, Colton and Wei, Meiqin and Zhu, Xiaoyu},
title = {Generalized {Rainbow} {Connection} of {Graphs} and their {Complements}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {371--384},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/}
}
TY - JOUR AU - Li, Xueliang AU - Magnant, Colton AU - Wei, Meiqin AU - Zhu, Xiaoyu TI - Generalized Rainbow Connection of Graphs and their Complements JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 371 EP - 384 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/ LA - en ID - DMGT_2018_38_2_a2 ER -
%0 Journal Article %A Li, Xueliang %A Magnant, Colton %A Wei, Meiqin %A Zhu, Xiaoyu %T Generalized Rainbow Connection of Graphs and their Complements %J Discussiones Mathematicae. Graph Theory %D 2018 %P 371-384 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/ %G en %F DMGT_2018_38_2_a2
Li, Xueliang; Magnant, Colton; Wei, Meiqin; Zhu, Xiaoyu. Generalized Rainbow Connection of Graphs and their Complements. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 371-384. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a2/