The Smallest Harmonic Index of Trees with Given Maximum Degree
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 499-513

Voir la notice de l'article provenant de la source Library of Science

The harmonic index of a graph G, denoted by H(G), is defined as the sum of weights 2/[d(u) + d(v)] over all edges uv of G, where d(u) denotes the degree of a vertex u. In this paper we establish a lower bound on the harmonic index of a tree T.
Keywords: harmonic index, trees
@article{DMGT_2018_38_2_a12,
     author = {Rasi, Reza and Sheikholeslami, Seyed Mahmoud},
     title = {The {Smallest} {Harmonic} {Index} of {Trees} with {Given} {Maximum} {Degree}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {499--513},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/}
}
TY  - JOUR
AU  - Rasi, Reza
AU  - Sheikholeslami, Seyed Mahmoud
TI  - The Smallest Harmonic Index of Trees with Given Maximum Degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 499
EP  - 513
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/
LA  - en
ID  - DMGT_2018_38_2_a12
ER  - 
%0 Journal Article
%A Rasi, Reza
%A Sheikholeslami, Seyed Mahmoud
%T The Smallest Harmonic Index of Trees with Given Maximum Degree
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 499-513
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/
%G en
%F DMGT_2018_38_2_a12
Rasi, Reza; Sheikholeslami, Seyed Mahmoud. The Smallest Harmonic Index of Trees with Given Maximum Degree. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 499-513. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/