The Smallest Harmonic Index of Trees with Given Maximum Degree
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 499-513.

Voir la notice de l'article provenant de la source Library of Science

The harmonic index of a graph G, denoted by H(G), is defined as the sum of weights 2/[d(u) + d(v)] over all edges uv of G, where d(u) denotes the degree of a vertex u. In this paper we establish a lower bound on the harmonic index of a tree T.
Keywords: harmonic index, trees
@article{DMGT_2018_38_2_a12,
     author = {Rasi, Reza and Sheikholeslami, Seyed Mahmoud},
     title = {The {Smallest} {Harmonic} {Index} of {Trees} with {Given} {Maximum} {Degree}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {499--513},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/}
}
TY  - JOUR
AU  - Rasi, Reza
AU  - Sheikholeslami, Seyed Mahmoud
TI  - The Smallest Harmonic Index of Trees with Given Maximum Degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 499
EP  - 513
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/
LA  - en
ID  - DMGT_2018_38_2_a12
ER  - 
%0 Journal Article
%A Rasi, Reza
%A Sheikholeslami, Seyed Mahmoud
%T The Smallest Harmonic Index of Trees with Given Maximum Degree
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 499-513
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/
%G en
%F DMGT_2018_38_2_a12
Rasi, Reza; Sheikholeslami, Seyed Mahmoud. The Smallest Harmonic Index of Trees with Given Maximum Degree. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 499-513. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/

[1] H. Deng, S. Balachandran, S.K. Ayyaswamy and Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013) 2740–2744. doi:10.1016/j.dam.2013.04.003

[2] H. Deng, S. Balachandran, S.K. Ayyaswamy and V.B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, Ars Combin. 130 (2017) 239–248.

[3] S. Fajtlowicz, On conjectures of Graffiti- II, Congr. Numer. 60 (1987) 187–197.

[4] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973–8978. doi:10.1016/j.amc.2013.03.072

[5] O. Favaron, M. Mahio and J.F. Sacle, Some eigenvalue properties in graphs ( Conjectures of Graffiti- II), Discrete Math. 111 (1993) 197–220. doi:10.1016/0012-365X(93)90156-N

[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351–361. doi:10.5562/cca2294

[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals,Total-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. doi:10.1016/0009-2614(72)85099-1

[8] I. Gutman, L. Zhong and K. Xu, Relating ABC and harmonic indices, J. Serb. Chem. Soc. 79 (2014) 557–563. doi:10.2298/JSC130930001G

[9] Y. Hu and X. Zhou, On the harmonic index of the unicyclic and bicyclic graphs, WSEAS Trans. Math. 12 (2013) 716–726.

[10] A. Ilic, Note on the harmonic index of a graph, Appl. Math. Lett. 25 (2012) 561–566. doi:10.1016/j.aml.2011.09.059

[11] M.A. Iranmanesh and M. Saheli, On the harmonic index and harmonic polynomial of caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015) 41–49.

[12] J. Li and W.C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44 (2014) 1607–1620. doi:0.1216/RMJ-2014-44-5-1607

[13] J. Liu, On harmonic index and diameter of graphs, J. Appl. Math. Phys. 1 (2013) 5–6. doi:10.4236/jamp.2013.13002

[14] J. Liu, On the harmonic index of triangle-free graphs, Appl. Math. 4 (2013) 1204–1206. doi:10.4236/am.2013.48161

[15] J. Liu, Harmonic index of dense graphs, Ars Combin. 120 (2015) 293–304.

[16] J. Liu and Q. Zhang, Remarks on harmonic index of graphs, Util. Math. 88 (2012) 281–285.

[17] J.B. Lv, J. Li and W.C. Shiu, The harmonic index of unicyclic graphs with given matching number, Kragujevac J. Math. 38 (2014) 173–183. doi:doi.org/10.5937/KgJMath1401173J

[18] S. Liu and J. Liu, Some properties on the harmonic index of molecular trees, ISRN Appl. Math. (2014) 1–8.

[19] R. Rasi, S.M. Sheikholeslami and I. Gutman, On harmonic index of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 405–416.

[20] R.Wu, Z. Tang and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51–55. doi:10.2298/FIL1301051W

[21] R. Wu, Z. Tang and H. Deng, On the harmonic index and the girth of a graph, Util. Math. 91 (2013) 65–69.

[22] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012) 2013–2018.

[23] L. Yang and H. Hua, The harmonic index of general graphs, nanocones and triangular benzenoid graphs, Optoelectron. Adv. Mater. - Rapid Commun. 6 (2012) 660–663.

[24] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566. doi:10.1016/j.aml.2011.09.059

[25] L. Zhong, The harmonic index of unicyclic graphs, Ars Combin. 104 (2012) 261–269.

[26] L. Zhong, The harmonic index for unicyclic and bicyclic graphs with given matching number, Miskolc Math. Notes 16 (2015) 587–605.

[27] L. Zhong and Q. Cui, The harmonic index for unicyclic graphs with given girth, Filomat 29 (2015) 673–686. doi:10.2298/FIL1504673Z

[28] L. Zhong and K. Xu, The harmonic index for bicyclic graphs, Util. Math. 90 (2013) 23–32.

[29] L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627–642.

[30] Y. Zhu, R. Chang and X. Wei, The harmonic index on bicyclic graphs, Ars Combin. 110 (2013) 97–104.

[31] Y. Zhu and R. Chang, On the harmonic index of bicyclic conjugated molecular graphs, Filomat 28 (2014) 421–428. doi:10.2298/FIL1402421Z

[32] Y. Zhu and R. Chang, Minimum harmonic index of trees and unicyclic graphs with given number of pendant vertices and diameter, Util. Math. 93 (2014) 345–374.

[33] A. Zolfi, A.R. Ashrafi and S. Moradi, The top ten values of harmonic index in chemical trees, Kragujevac J. Sci. 37 (2015) 91–98.