Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a12, author = {Rasi, Reza and Sheikholeslami, Seyed Mahmoud}, title = {The {Smallest} {Harmonic} {Index} of {Trees} with {Given} {Maximum} {Degree}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {499--513}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/} }
TY - JOUR AU - Rasi, Reza AU - Sheikholeslami, Seyed Mahmoud TI - The Smallest Harmonic Index of Trees with Given Maximum Degree JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 499 EP - 513 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/ LA - en ID - DMGT_2018_38_2_a12 ER -
Rasi, Reza; Sheikholeslami, Seyed Mahmoud. The Smallest Harmonic Index of Trees with Given Maximum Degree. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 499-513. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a12/
[1] H. Deng, S. Balachandran, S.K. Ayyaswamy and Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013) 2740–2744. doi:10.1016/j.dam.2013.04.003
[2] H. Deng, S. Balachandran, S.K. Ayyaswamy and V.B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, Ars Combin. 130 (2017) 239–248.
[3] S. Fajtlowicz, On conjectures of Graffiti- II, Congr. Numer. 60 (1987) 187–197.
[4] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973–8978. doi:10.1016/j.amc.2013.03.072
[5] O. Favaron, M. Mahio and J.F. Sacle, Some eigenvalue properties in graphs ( Conjectures of Graffiti- II), Discrete Math. 111 (1993) 197–220. doi:10.1016/0012-365X(93)90156-N
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351–361. doi:10.5562/cca2294
[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals,Total-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. doi:10.1016/0009-2614(72)85099-1
[8] I. Gutman, L. Zhong and K. Xu, Relating ABC and harmonic indices, J. Serb. Chem. Soc. 79 (2014) 557–563. doi:10.2298/JSC130930001G
[9] Y. Hu and X. Zhou, On the harmonic index of the unicyclic and bicyclic graphs, WSEAS Trans. Math. 12 (2013) 716–726.
[10] A. Ilic, Note on the harmonic index of a graph, Appl. Math. Lett. 25 (2012) 561–566. doi:10.1016/j.aml.2011.09.059
[11] M.A. Iranmanesh and M. Saheli, On the harmonic index and harmonic polynomial of caterpillars with diameter four, Iranian J. Math. Chem. 6 (2015) 41–49.
[12] J. Li and W.C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44 (2014) 1607–1620. doi:0.1216/RMJ-2014-44-5-1607
[13] J. Liu, On harmonic index and diameter of graphs, J. Appl. Math. Phys. 1 (2013) 5–6. doi:10.4236/jamp.2013.13002
[14] J. Liu, On the harmonic index of triangle-free graphs, Appl. Math. 4 (2013) 1204–1206. doi:10.4236/am.2013.48161
[15] J. Liu, Harmonic index of dense graphs, Ars Combin. 120 (2015) 293–304.
[16] J. Liu and Q. Zhang, Remarks on harmonic index of graphs, Util. Math. 88 (2012) 281–285.
[17] J.B. Lv, J. Li and W.C. Shiu, The harmonic index of unicyclic graphs with given matching number, Kragujevac J. Math. 38 (2014) 173–183. doi:doi.org/10.5937/KgJMath1401173J
[18] S. Liu and J. Liu, Some properties on the harmonic index of molecular trees, ISRN Appl. Math. (2014) 1–8.
[19] R. Rasi, S.M. Sheikholeslami and I. Gutman, On harmonic index of trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 405–416.
[20] R.Wu, Z. Tang and H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51–55. doi:10.2298/FIL1301051W
[21] R. Wu, Z. Tang and H. Deng, On the harmonic index and the girth of a graph, Util. Math. 91 (2013) 65–69.
[22] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012) 2013–2018.
[23] L. Yang and H. Hua, The harmonic index of general graphs, nanocones and triangular benzenoid graphs, Optoelectron. Adv. Mater. - Rapid Commun. 6 (2012) 660–663.
[24] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566. doi:10.1016/j.aml.2011.09.059
[25] L. Zhong, The harmonic index of unicyclic graphs, Ars Combin. 104 (2012) 261–269.
[26] L. Zhong, The harmonic index for unicyclic and bicyclic graphs with given matching number, Miskolc Math. Notes 16 (2015) 587–605.
[27] L. Zhong and Q. Cui, The harmonic index for unicyclic graphs with given girth, Filomat 29 (2015) 673–686. doi:10.2298/FIL1504673Z
[28] L. Zhong and K. Xu, The harmonic index for bicyclic graphs, Util. Math. 90 (2013) 23–32.
[29] L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627–642.
[30] Y. Zhu, R. Chang and X. Wei, The harmonic index on bicyclic graphs, Ars Combin. 110 (2013) 97–104.
[31] Y. Zhu and R. Chang, On the harmonic index of bicyclic conjugated molecular graphs, Filomat 28 (2014) 421–428. doi:10.2298/FIL1402421Z
[32] Y. Zhu and R. Chang, Minimum harmonic index of trees and unicyclic graphs with given number of pendant vertices and diameter, Util. Math. 93 (2014) 345–374.
[33] A. Zolfi, A.R. Ashrafi and S. Moradi, The top ten values of harmonic index in chemical trees, Kragujevac J. Sci. 37 (2015) 91–98.