On the Number of Disjoint 4-Cycles in Regular Tournaments
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 491-498.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove that for an integer r ≥ 1, every regular tournament T of degree 3r − 1 contains at least 2116 r- 103 disjoint directed 4-cycles. Our result is an improvement of Lichiardopol’s theorem when taking q = 4 [Discrete Math. 310 (2010) 2567–2570]: for given integers q ≥ 3 and r ≥ 1, a tournament T with minimum out-degree and in-degree both at least (q − 1)r − 1 contains at least r disjoint directed cycles of length q.
Keywords: regular tournament, C 4 -free, disjoint cycles
@article{DMGT_2018_38_2_a11,
     author = {Ma, Fuhong and Yan, Jin},
     title = {On the {Number} of {Disjoint} {4-Cycles} in {Regular} {Tournaments}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {491--498},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/}
}
TY  - JOUR
AU  - Ma, Fuhong
AU  - Yan, Jin
TI  - On the Number of Disjoint 4-Cycles in Regular Tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 491
EP  - 498
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/
LA  - en
ID  - DMGT_2018_38_2_a11
ER  - 
%0 Journal Article
%A Ma, Fuhong
%A Yan, Jin
%T On the Number of Disjoint 4-Cycles in Regular Tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 491-498
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/
%G en
%F DMGT_2018_38_2_a11
Ma, Fuhong; Yan, Jin. On the Number of Disjoint 4-Cycles in Regular Tournaments. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 491-498. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/

[1] Y. Bai, B. Li and H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015) 1307–1309. doi:10.1016/j.disc.2015.02.012

[2] J. Bang-Jensen, S. Bessy and S. Thomasse, Disjoint 3- cycles in tournaments: a Proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75 (2014) 284–302. doi:10.1002/jgt.21740

[3] J.C. Bermond and C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1981) 1–43. doi:10.1002/jgt.3190050102

[4] S. Bessy, N. Lichiardopol and J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (2010) 557–560. doi:10.1016/j.disc.2009.03.039

[5] N. Lichiardopol, A. Pór and J.S. Sereni, A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2009) 979–992. doi:10.1137/080715792

[6] N. Lichiardopol, Vertex-disjoint cycles in regular tournaments, Discrete Math. 312 (2012) 1927–1930. doi:10.1016/j.disc.2012.03.009

[7] N. Lichiardopol, Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree, Discrete Math. 310 (2010) 2567–2570. doi:10.1016/j.disc.2010.06.024

[8] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983) 393–396. doi:10.1007/BF02579195