Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a11, author = {Ma, Fuhong and Yan, Jin}, title = {On the {Number} of {Disjoint} {4-Cycles} in {Regular} {Tournaments}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {491--498}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/} }
Ma, Fuhong; Yan, Jin. On the Number of Disjoint 4-Cycles in Regular Tournaments. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 491-498. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/
[1] Y. Bai, B. Li and H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015) 1307–1309. doi:10.1016/j.disc.2015.02.012
[2] J. Bang-Jensen, S. Bessy and S. Thomasse, Disjoint 3- cycles in tournaments: a Proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75 (2014) 284–302. doi:10.1002/jgt.21740
[3] J.C. Bermond and C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1981) 1–43. doi:10.1002/jgt.3190050102
[4] S. Bessy, N. Lichiardopol and J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (2010) 557–560. doi:10.1016/j.disc.2009.03.039
[5] N. Lichiardopol, A. Pór and J.S. Sereni, A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2009) 979–992. doi:10.1137/080715792
[6] N. Lichiardopol, Vertex-disjoint cycles in regular tournaments, Discrete Math. 312 (2012) 1927–1930. doi:10.1016/j.disc.2012.03.009
[7] N. Lichiardopol, Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree, Discrete Math. 310 (2010) 2567–2570. doi:10.1016/j.disc.2010.06.024
[8] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (1983) 393–396. doi:10.1007/BF02579195