On the Number of Disjoint 4-Cycles in Regular Tournaments
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 491-498

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove that for an integer r ≥ 1, every regular tournament T of degree 3r − 1 contains at least 2116 r- 103 disjoint directed 4-cycles. Our result is an improvement of Lichiardopol’s theorem when taking q = 4 [Discrete Math. 310 (2010) 2567–2570]: for given integers q ≥ 3 and r ≥ 1, a tournament T with minimum out-degree and in-degree both at least (q − 1)r − 1 contains at least r disjoint directed cycles of length q.
Keywords: regular tournament, C 4 -free, disjoint cycles
@article{DMGT_2018_38_2_a11,
     author = {Ma, Fuhong and Yan, Jin},
     title = {On the {Number} of {Disjoint} {4-Cycles} in {Regular} {Tournaments}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {491--498},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/}
}
TY  - JOUR
AU  - Ma, Fuhong
AU  - Yan, Jin
TI  - On the Number of Disjoint 4-Cycles in Regular Tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 491
EP  - 498
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/
LA  - en
ID  - DMGT_2018_38_2_a11
ER  - 
%0 Journal Article
%A Ma, Fuhong
%A Yan, Jin
%T On the Number of Disjoint 4-Cycles in Regular Tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 491-498
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/
%G en
%F DMGT_2018_38_2_a11
Ma, Fuhong; Yan, Jin. On the Number of Disjoint 4-Cycles in Regular Tournaments. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 491-498. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a11/