Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_2_a10, author = {Li, Ruijuan and Han, Tingting}, title = {Arc-Disjoint {Hamiltonian} {Cycles} in {Round} {Decomposable} {Locally} {Semicomplete} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {477--490}, publisher = {mathdoc}, volume = {38}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a10/} }
TY - JOUR AU - Li, Ruijuan AU - Han, Tingting TI - Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally Semicomplete Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 477 EP - 490 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a10/ LA - en ID - DMGT_2018_38_2_a10 ER -
%0 Journal Article %A Li, Ruijuan %A Han, Tingting %T Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally Semicomplete Digraphs %J Discussiones Mathematicae. Graph Theory %D 2018 %P 477-490 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a10/ %G en %F DMGT_2018_38_2_a10
Li, Ruijuan; Han, Tingting. Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally Semicomplete Digraphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 2, pp. 477-490. http://geodesic.mathdoc.fr/item/DMGT_2018_38_2_a10/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer Monographs in Mathematics, Spring-Verlag, London, 2009). doi:10.1007/978-1-84800-998-1
[2] J. Bang-Jensen, Locally semicomplete digraph: A generalization of tournaments, J. Graph Theory 14 (1990) 371–390. doi:10.1002/jgt.3190140310
[3] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167-168 (1997) 101–114. doi:10.1016/S0012-365X(96)00219-1
[4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong spanning subdigraphs, J. Combin. Theory Ser. B 102 (2012) 701–714. doi:10.1016/j.jctb.2011.09.001
[5] Y. Guo, Locally Semicomplete Digraphs (Ph.D. Thesis, RWTH Aachen University, 1995).
[6] Y. Guo, Strongly Hamiltonian-connected locally semicomplet digraphs, J. Graph Theory 21 (1996) 65–73. doi:10.1002/(SICI)1097-0118(199605)22:1h65::AID-JGT9i3.0.CO;2-J
[7] F. Harary and L. Moser, The theory of round robin tournaments, Amer. Math. Monthly 73 (1966) 231–246. doi:10.2307/2315334
[8] J. Huang, On the structure of local tournaments, J. Combin. Theory Ser. B 63 (1995) 200–221. doi:10.1006/jctb.1995.1016
[9] S. Li, W. Meng, Y. Guo and G. Xu, A local tournament contains a vertex whose out-arc are pseudo-girth-pancyclic, J. Graph Theory 62 (2009) 346–361. doi:10.1002/jgt.20404
[10] D. Meierling, Local tournaments with the minimum number of Hamiltonian cycles or cycles of length three, Discrete Math. 310 (2010) 1940–1948. doi:10.1016/j.disc.2010.03.003
[11] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments, Proc. Lond. Math. Soc. (3) 45 (1982) 151–168. doi:10.1112/plms/s3-45.1.151
[12] R. Wang, A. Yang and S. Wang, Kings in locally semicomplete digraphs, J. Graph Theory 63 (2010) 279–283. doi:10.1002/jgt.20426
[13] X.H. Zhang, R.J. Li and S.J. Li, H-force sets of locally semicomplete digraphs, Discrete Appl. Math. 160 (2012) 2491–2496. doi:10.1016/j.dam.2012.06.014