Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a8, author = {Janczewski, Robert and Ma{\l}afiejski, Micha{\l} and Ma{\l}afiejska, Anna}, title = {On {Incidence} {Coloring} of {Complete} {Multipartite} and {Semicubic} {Bipartite} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {107--119}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a8/} }
TY - JOUR AU - Janczewski, Robert AU - Małafiejski, Michał AU - Małafiejska, Anna TI - On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 107 EP - 119 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a8/ LA - en ID - DMGT_2018_38_1_a8 ER -
%0 Journal Article %A Janczewski, Robert %A Małafiejski, Michał %A Małafiejska, Anna %T On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs %J Discussiones Mathematicae. Graph Theory %D 2018 %P 107-119 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a8/ %G en %F DMGT_2018_38_1_a8
Janczewski, Robert; Małafiejski, Michał; Małafiejska, Anna. On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a8/
[1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11–22. doi:10.1016/0012-365X(89)90073-3
[2] N. Alon, C. McDiarmid and B. Reed, Star arboricity, Combinatorica 12 (1992) 375–380. doi:10.1007/BF01305230
[3] R.A. Brualdi and J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51–58. doi:10.1016/0012-365X(93)90286-3
[4] T. Calamoneri, The L ( h, k )- labelling problem: an updated survey and annotated bibliography, Department of Computer Science, University of Rome (2014) 1–54, a manuscript.
[5] D.L. Chen, X.K. Liu and S.D. Wang, The incidence chromatic number and the incidence coloring conjecture of graphs, Math. Econ. 15 (1998) 47–51.
[6] D.L. Chen, P.C.B. Lam and W.C. Shiu, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259–266. doi:10.1016/S0012-365X(01)00457-5
[7] M.H. Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121–128. doi:10.1016/j.disc.2004.01.015
[8] M.H. Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203–216.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, 1979).
[10] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275–278. doi:10.1016/0012-365X(95)00342-T
[11] J. Guo, X. Meng and B. Su, Incidence coloring of pseudo-Halin graphs, Discrete Math. 312 (2012) 3276–3282. doi:10.1016/j.disc.2012.07.024
[12] P. Heggernes and J.A. Telle, Partitioning graphs into generalized dominating sets, Nordic J. Comput. 5 (1998) 128–143.
[13] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334–1340. doi:10.1016/j.disc.2007.03.076
[14] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131–141. doi:10.1016/j.disc.2005.02.003
[15] K. Nakprasit and K. Nakprasit, Incidence colorings of the powers of cycles, Int. J. Pure Appl. Math. 76 (2012) 143–148.
[16] A.C. Shiau, T.-H. Shiau and Y.-L. Wang, Incidence coloring of Cartesian product graphs, Inform. Process. Lett. 115 (2015) 765–768. doi:10.1016/j.ipl.2015.05.002
[17] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575–6580. doi:10.1016/j.disc.2007.11.030
[18] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866–3870. doi:10.1016/j.disc.2008.10.027
[19] X. Liu and Y. Li, The incidence chromatic number of some graph, Int. J. Math. Math. Sci. 5 (2005) 803–813. doi:10.1155/IJMMS.2005.803