Constant Sum Partition of Sets of Integers and Distance Magic Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 97-106.

Voir la notice de l'article provenant de la source Library of Science

Let A = 1, 2, . . ., tm+tn. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into 2t pairwise disjoint subsets A^1, A^2, ... , A^t, B^1, B^2, ... , B^t such that | A^i | = m and | B^i | = n, and Σ_ a ∈ A^i a = Σ_ b ∈ B^j b for 1 ≤ i ≤ t and 1 ≤ j ≤ t. In this paper we give sufficient and necessary conditions for a set A to have the (m, n, t)-BCSP-property in the case when m and n are both even. We use this result to show some families of distance magic graphs.
Keywords: constant sum partition, distance magic labeling, product of graphs
@article{DMGT_2018_38_1_a7,
     author = {Cichacz, Sylwia and G\H{o}rlich, Agnieszka},
     title = {Constant {Sum} {Partition} of {Sets} of {Integers} and {Distance} {Magic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Gőrlich, Agnieszka
TI  - Constant Sum Partition of Sets of Integers and Distance Magic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 97
EP  - 106
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/
LA  - en
ID  - DMGT_2018_38_1_a7
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Gőrlich, Agnieszka
%T Constant Sum Partition of Sets of Integers and Distance Magic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 97-106
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/
%G en
%F DMGT_2018_38_1_a7
Cichacz, Sylwia; Gőrlich, Agnieszka. Constant Sum Partition of Sets of Integers and Distance Magic Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 97-106. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/

[1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdős and O.R. Oellerman, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7–14.

[2] K. Ando, S. Gervacio and M. Kano, Disjoint subsets of integers having a constant sum, Discrete Math. 82 (1990) 7–11. doi:10.1016/0012-365X(90)90040-O

[3] M. Anholcer and S. Cichacz, Note on distance magic products G ◦ C4, Graphs Combin. 31 (2015) 1117–1124. doi:10.1007/s00373-014-1453-x

[4] M. Anholcer, S. Cichacz, I. Peterin and A. Tepeh, Distance magic labeling and two products of graphs, Graphs Combin. 31 (2015) 1125–1136. doi:10.1007/s00373-014-1455-8

[5] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs — A survey, J. Indones. Math. Soc., Special Edition (2011) 11–26.

[6] S. Beena, On Σ and Σ′ labelled graphs, Discrete Math. 309 (2009) 1783–1787. doi:10.1016/j.disc.2008.02.038

[7] F.L. Chen, H.L. Fu, Y. Wang and J. Zhou, Partition of a set of integers into subsets with prescribed sums, Taiwanese J. Math. 9 (2005) 629–638.

[8] S. Cichacz, D. Froncek, E. Krop and C. Raridan, Distance magic Cartesian products of graphs, Discuss. Math. Graph Theory 36 (2016) 299–308. doi:10.7151/dmgt.1852

[9] H. Enomoto and M. Kano, Disjoint odd integer subsets having a constant even sum, Discrete Math. 137 (1995) 189–193. doi:10.1016/0012-365X(93)E0128-Q

[10] R.J. Faudree, A. Gyárfás and R.H. Schelp, Graphs which have an ascending subgraph decomposition, Congr. Numer. 59 (1987) 49–54.

[11] H.L. Fu and W.H. Hu, A note on ascending subgraph decompositions of complete multipartite graphs, Discrete Math. 226 (2001) 397–402. doi:10.1016/S0012-365X(00)00171-0

[12] H.L. Fu and W.H. Hu, A special partition of the set In, Bull. Inst. Combin. Appl. 6 (1992) 57–61.

[13] H.L. Fu and W.H. Hu, Ascending subgraph decompositions of regular graphs, Discrete Math. 253 (2002) 11–18. doi:10.1016/S0012-365X(01)00445-9

[14] H.L. Fu and W.H. Hu, Disjoint odd integer subsets having a constant odd sum, Discrete Math. 128 (1994) 143–150. doi:10.1016/0012-365X(94)90108-2

[15] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016) #DS6.

[16] P. Gregor and P. Kovář, Distance magic labelings of hypercubes, Electron. Notes Discrete Math. 40 (2013) 145–149. doi:10.1016/j.endm.2013.05.027

[17] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65–72. doi:10.1016/S0012-365X(99)00041-2

[18] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1994).

[19] T. Harmuth, Über magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286–313.

[20] T. Harmuth, Über magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413–447.

[21] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).

[22] D. Kotlar, Distance magic labeling in complete 4- partite graphs, Graphs Combin. 32 (2016) 1027–1038. doi:10.1007/s00373-015-1627-1

[23] A. Lladó and J. Moragas, On the sumset partition problem, Electron. Notes Discrete Math. 34 (2009) 15–19. doi:10.1016/j.endm.2009.07.003

[24] A. Lladó and J. Moragas, On the modular sumset partition problem, European J. Combin. 33 (2012) 427–434. doi:10.1016/j.ejc.2011.09.001

[25] K. Ma, H. Zhou and J. Zhou, On the ascending star subgraph decomposition of star forests, Combinatorica 14 (1994) 307–320. doi:10.1007/BF01212979

[26] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.

[27] A. O’Neal and P.J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013) 708–716. doi:10.1137/110834421

[28] S.B. Rao, T. Singh and V. Prameswaran, Some sigma labelled graphs I, in: Graphs, Combinatorics, Algorithms and Applications, S. Arumugam, B.D. Acharya and S.B. Rao, (Eds.), (Narosa Publishing House, New Delhi, 2004) 125–133.

[29] V. Vilfred, Σ-Labelled Graphs and Circulant Graphs (Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994).