Constant Sum Partition of Sets of Integers and Distance Magic Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 97-106

Voir la notice de l'article provenant de la source Library of Science

Let A = 1, 2, . . ., tm+tn. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into 2t pairwise disjoint subsets A^1, A^2, ... , A^t, B^1, B^2, ... , B^t such that | A^i | = m and | B^i | = n, and Σ_ a ∈ A^i a = Σ_ b ∈ B^j b for 1 ≤ i ≤ t and 1 ≤ j ≤ t. In this paper we give sufficient and necessary conditions for a set A to have the (m, n, t)-BCSP-property in the case when m and n are both even. We use this result to show some families of distance magic graphs.
Keywords: constant sum partition, distance magic labeling, product of graphs
@article{DMGT_2018_38_1_a7,
     author = {Cichacz, Sylwia and G\H{o}rlich, Agnieszka},
     title = {Constant {Sum} {Partition} of {Sets} of {Integers} and {Distance} {Magic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Gőrlich, Agnieszka
TI  - Constant Sum Partition of Sets of Integers and Distance Magic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 97
EP  - 106
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/
LA  - en
ID  - DMGT_2018_38_1_a7
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Gőrlich, Agnieszka
%T Constant Sum Partition of Sets of Integers and Distance Magic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 97-106
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/
%G en
%F DMGT_2018_38_1_a7
Cichacz, Sylwia; Gőrlich, Agnieszka. Constant Sum Partition of Sets of Integers and Distance Magic Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 97-106. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a7/