Cubic Graphs with Total Domatic Number at Least Two
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph with no isolated vertex. A total dominating set of G is a set S of vertices of G such that every vertex is adjacent to at least one vertex in S. The total domatic number of a graph is the maximum number of total dominating sets which partition the vertex set of G. In this paper we provide a criterion under which a cubic graph has total domatic number at least two.
Keywords: total domination, total domatic number, coupon coloring
@article{DMGT_2018_38_1_a5,
     author = {Akbari, Saieed and Motiei, Mohammad and Mozaffari, Sahand and Yazdanbod, Sina},
     title = {Cubic {Graphs} with {Total} {Domatic} {Number} at {Least} {Two}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a5/}
}
TY  - JOUR
AU  - Akbari, Saieed
AU  - Motiei, Mohammad
AU  - Mozaffari, Sahand
AU  - Yazdanbod, Sina
TI  - Cubic Graphs with Total Domatic Number at Least Two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 75
EP  - 82
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a5/
LA  - en
ID  - DMGT_2018_38_1_a5
ER  - 
%0 Journal Article
%A Akbari, Saieed
%A Motiei, Mohammad
%A Mozaffari, Sahand
%A Yazdanbod, Sina
%T Cubic Graphs with Total Domatic Number at Least Two
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 75-82
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a5/
%G en
%F DMGT_2018_38_1_a5
Akbari, Saieed; Motiei, Mohammad; Mozaffari, Sahand; Yazdanbod, Sina. Cubic Graphs with Total Domatic Number at Least Two. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a5/

[1] N. Alon and Z. Bregman, Every 8- uniform 8- regular hypergraph is 2- colorable, Graphs Combin. 4 (1988) 303–306. doi:10.1007/BF01864169

[2] B. Chen, J.H. Kim, M. Tait and J. Verstraete, On coupon colorings of graphs, Discrete Appl. Math. 193 (2015) 94–101. doi:10.1016/j.dam.2015.04.026

[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. doi:10.1002/net.3230100304

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, 1998).

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, 1998).

[6] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, 2013). doi:10.1007/978-1-4614-6525-6

[7] M.A. Henning and A. Yeo, 2- Colorings in k-regular k-uniform hypergraphs, European J. Combin. 34 (2013) 1192–1202. doi:10.1016/j.ejc.2013.04.005

[8] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977) 69–76. doi:10.1016/0012-365X(77)90044-9

[9] J. Spencer, Ten Lectures on the Probabilistic Method (SIAM, 1987).