On the Total k-Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 301-317.

Voir la notice de l'article provenant de la source Library of Science

Let G=(V, E) be a graph; a set S ⊆ V is a total k-dominating set if every vertex v ∈ V has at least k neighbors in S. The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating sets. In this paper we obtain several tight bounds for the total k-domination number of a graph. In particular, we investigate the relationship between the total k-domination number of a graph and the order, the size, the girth, the minimum and maximum degree, the diameter, and other domination parameters of the graph.
Keywords: k -domination, total k -domination, k -tuple domination, k -tuple total domination
@article{DMGT_2018_38_1_a23,
     author = {Bermudo, Sergio and Hern\'andez-G\'omez, Juan C. and Sigarreta, Jos\'e M.},
     title = {On the {Total} {k-Domination} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {301--317},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/}
}
TY  - JOUR
AU  - Bermudo, Sergio
AU  - Hernández-Gómez, Juan C.
AU  - Sigarreta, José M.
TI  - On the Total k-Domination in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 301
EP  - 317
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/
LA  - en
ID  - DMGT_2018_38_1_a23
ER  - 
%0 Journal Article
%A Bermudo, Sergio
%A Hernández-Gómez, Juan C.
%A Sigarreta, José M.
%T On the Total k-Domination in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 301-317
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/
%G en
%F DMGT_2018_38_1_a23
Bermudo, Sergio; Hernández-Gómez, Juan C.; Sigarreta, José M. On the Total k-Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 301-317. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/

[1] S. Bermudo, J.L. Sánchez and J.M. Sigarreta, Total k-domination in Cartesian product graphs, Period. Math. Hungar. (2016), to appear.

[2] S. Bermudo, D.L. Jalemskaya and J.M. Sigarreta, Total 2- domination in grid graphs, Util. Math. (2017), to appear.

[3] E.J. Cockayne and A.G. Thomason, An upper bound for the k-tuple domination number, J. Combin. Math. Combin. Comput. 64 (2008) 251–254.

[4] P. Dorbec, S. Gravier, S. Klavžar and S. Špacapan, Some results on total domination in direct products of graphs, Discuss. Math. Graph Theory 26 (2006) 103–112. doi:10.7151/dmgt.1305

[5] O. Favaron, M.A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, Discrete Math. 231 (2001) 143–151. doi:10.1016/S0012-365X(00)00313-7

[6] H. Fernau, J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global powerful r-alliances and total k-domination in graphs, Util. Math. 98 (2015) 127–147.

[7] J. Harant and M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29–34. doi:10.7151/dmgt.1256

[8] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.

[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[11] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32–63. doi:10.1016/j.disc.2007.12.044

[12] M.A. Henning and A.P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158 (2010) 1006–1011. doi:10.1016/j.dam.2010.01.009

[13] M.A. Henning and A.P. Kazemi, k-tuple total domination in cross products of graphs, J. Comb. Optim. 24 (2012) 339–346. doi:10.1007/s10878-011-9389-z

[14] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).

[15] A.P. Kazemi, On the total k-domination number of graphs, Discuss. Math. Graph Theory 32 (2012) 419–426. doi:10.7151/dmgt.1616

[16] A. Klobucar, Total domination numbers of Cartesian products, Math. Commun. 9 (2004) 35–44.

[17] V.R. Kulli, On n-total domination number in graphs, Graph theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, 1989), (SIAM, Philadelphia, PA, 1991) 319–324.