On the Total k-Domination in Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 301-317

Voir la notice de l'article provenant de la source Library of Science

Let G=(V, E) be a graph; a set S ⊆ V is a total k-dominating set if every vertex v ∈ V has at least k neighbors in S. The total k-domination number γkt(G) is the minimum cardinality among all total k-dominating sets. In this paper we obtain several tight bounds for the total k-domination number of a graph. In particular, we investigate the relationship between the total k-domination number of a graph and the order, the size, the girth, the minimum and maximum degree, the diameter, and other domination parameters of the graph.
Keywords: k -domination, total k -domination, k -tuple domination, k -tuple total domination
@article{DMGT_2018_38_1_a23,
     author = {Bermudo, Sergio and Hern\'andez-G\'omez, Juan C. and Sigarreta, Jos\'e M.},
     title = {On the {Total} {k-Domination} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {301--317},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/}
}
TY  - JOUR
AU  - Bermudo, Sergio
AU  - Hernández-Gómez, Juan C.
AU  - Sigarreta, José M.
TI  - On the Total k-Domination in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 301
EP  - 317
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/
LA  - en
ID  - DMGT_2018_38_1_a23
ER  - 
%0 Journal Article
%A Bermudo, Sergio
%A Hernández-Gómez, Juan C.
%A Sigarreta, José M.
%T On the Total k-Domination in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 301-317
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/
%G en
%F DMGT_2018_38_1_a23
Bermudo, Sergio; Hernández-Gómez, Juan C.; Sigarreta, José M. On the Total k-Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 301-317. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a23/