Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a22, author = {Kuziak, Dorota and Peterin, Iztok and Yero, Ismael G.}, title = {Bounding the {Open} {k-Monopoly} {Number} of {Strong} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {287--299}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a22/} }
TY - JOUR AU - Kuziak, Dorota AU - Peterin, Iztok AU - Yero, Ismael G. TI - Bounding the Open k-Monopoly Number of Strong Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 287 EP - 299 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a22/ LA - en ID - DMGT_2018_38_1_a22 ER -
%0 Journal Article %A Kuziak, Dorota %A Peterin, Iztok %A Yero, Ismael G. %T Bounding the Open k-Monopoly Number of Strong Product Graphs %J Discussiones Mathematicae. Graph Theory %D 2018 %P 287-299 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a22/ %G en %F DMGT_2018_38_1_a22
Kuziak, Dorota; Peterin, Iztok; Yero, Ismael G. Bounding the Open k-Monopoly Number of Strong Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 287-299. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a22/
[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: Applications of Discrete Math., R.D. Ringeisen and F.S. Roberts (Ed(s)), (SIAM, Philadelphia, 1988) 189–199.
[2] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296. doi:10.1016/0095-8956(73)90042-7
[3] C. Dwork, D. Peleg, N. Pippenger and E. Upfal, Fault tolerance in networks of bounded degree, SIAM J. Comput. 17 (1988) 975–988. doi:10.1137/0217061
[4] H. Fernau, J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global powerful r-alliances and total k-domination in graphs, Util. Math. 98 (2015) 127–147.
[5] P. Flocchini, R. Královič, A. Roncato, P. Ružička and N. Santoro, On time versus size for monotone dynamic monopolies in regular topologies, J. Discrete Algorithms 1 (2003) 129–150. doi:10.1016/S1570-8667(03)00022-4
[6] H. García-Molina and D. Barbara, How to assign votes in a distributed system, J. ACM 32 (1985) 841–860. doi:10.1145/4221.4223
[7] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[8] K. Khoshkhah, M. Nemati, H. Soltani and M. Zaker, A study of monopolies in graphs, Graphs Combin. 29 (2013) 1417–1427. doi:10.1007/s00373-012-1214-7
[9] P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157–177.
[10] D. Kuziak, I. Peterin and I.G. Yero, Computing the ( k- ) monopoly number of direct product of graphs, Filomat 29 (2015) 1163–1171. doi:10.2298/FIL1505163K
[11] D. Kuziak, I. Peterin and I.G. Yero, On the monopolies of lexicographic product graphs: bounds and closed formulaes, Bull. Math. Soc. Sci. Math. Roumanie N.S. 59 (2016) 355–366.
[12] D. Kuziak, I. Peterin and I.G. Yero, Open k-monopolies in graphs: complexity and related concepts, Discrete Math. Theor. Comput. Sci. 18 (3) (2016).
[13] N. Linial, D. Peleg, Yu. Rabinovich and M. Saks, Sphere packing and local majorities in graphs, in: Proc. 2nd Israel Symposium on Theory and Computing Systems (Natanya, Israel, 1993) 141–149. doi:10.1109/ISTCS.1993.253475
[14] A. Mishra and S.B. Rao, Minimum monopoly in regular and tree graphs, Discrete Math. 306 (2006) 1586–1594. doi:10.1016/j.disc.2005.06.036
[15] D. Peleg, Local majorities, coalitions and monopolies in graphs: a review, Theoret. Comput. Sci. 282 (2002) 231–257. doi:10.1016/S0304-3975(01)00055-X
[16] I. Peterin, The complexity of open k-monopolies in graphs for negative k, manuscript (2016).
[17] G.F. Sullivan, Complexity of System-Level Fault Diagnosis and Diagnosability, Ph.D. Thesis (Yale University, New Haven, CT, USA, 1986).
[18] I.G. Yero and J.A. Rodríguez-Velázquez, A survey on alliances in graphs: defensive alliances, Util. Math. (2016), to appear.
[19] M. Zaker, On dynamic monopolies of graphs with general thresholds, Discrete Math. 312 (2012) 1136–1143. doi:10.1016/j.disc.2011.11.038