Requiring that Minimal Separators Induce Complete Multipartite Subgraphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 263-273

Voir la notice de l'article provenant de la source Library of Science

Complete multipartite graphs range from complete graphs (with every partite set a singleton) to edgeless graphs (with a unique partite set). Requiring minimal separators to all induce one or the other of these extremes characterizes, respectively, the classical chordal graphs and the emergent unichord-free graphs. New theorems characterize several subclasses of the graphs whose minimal separators induce complete multipartite subgraphs, in particular the graphs that are 2-clique sums of complete, cycle, wheel, and octahedron graphs.
Keywords: minimal separator, complete multipartite graph, chordal graph, unichord-free graph
@article{DMGT_2018_38_1_a20,
     author = {McKee, Terry A.},
     title = {Requiring that {Minimal} {Separators} {Induce} {Complete} {Multipartite} {Subgraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a20/}
}
TY  - JOUR
AU  - McKee, Terry A.
TI  - Requiring that Minimal Separators Induce Complete Multipartite Subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 263
EP  - 273
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a20/
LA  - en
ID  - DMGT_2018_38_1_a20
ER  - 
%0 Journal Article
%A McKee, Terry A.
%T Requiring that Minimal Separators Induce Complete Multipartite Subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 263-273
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a20/
%G en
%F DMGT_2018_38_1_a20
McKee, Terry A. Requiring that Minimal Separators Induce Complete Multipartite Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 263-273. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a20/