Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a18, author = {Li, Wei}, title = {The {Graphs} {Whose} {Permanental} {Polynomials} {Are} {Symmetric}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {233--243}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/} }
Li, Wei. The Graphs Whose Permanental Polynomials Are Symmetric. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 233-243. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/
[1] M. Borowiecki and T. Jóźwiak, Computing the permanental polynomial of a multi-graph, Discuss. Math. 5 (1982) 9–16.
[2] M. Borowiecki and T. Jóźwiak, A note on characteristic and permanental polynomials of multigraphs, in: Graph Theory, M. Borowiecki, J.W. Kenendy and M.M. Syslo (Ed(s)), (Springer-Verlag, Berlin, 1983) 75–78. doi:10.1007/bfb0071615
[3] M. Borowiecki, On spectrum and per-spectrum of graphs, Publ. Inst. Math. (Beograd) (N.S.) 38 (1985) 31–33.
[4] Q. Chou, H. Liang and F. Bai, Computing the permanental polynomial of the high level fullerene C 70 with high precision, MATCH Commun. Math. Comput. Chem. 73 (2015) 327–336.
[5] D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs (Academic Press, New York, 1980).
[6] I. Gutman and G.G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 45 (2002) 55–70.
[7] W. Li, Graphs whose characteristic and permanental polynomials have coefficients of the same magnitude, Discrete Math. 339 (2016) 2127–2135. doi:10.1016/j.disc.2016.02.019
[8] W. Li and H. Zhang, On the permanental polynomials of matrices, Bull. Malays. Math. Sci. Soc. 38 (2015) 1361–1374. doi:10.1007/s40840-014-0093-x
[9] W. Li and H. Zhang, The permanental polynomials of certain graphs, MATCH Commum. Math. Comput. Chem. 68 (2012) 871–888.
[10] L. Lovász and M.D. Plummer, Matching Theory (Elsevier, Amsterdam, 1986).
[11] R. Merris, K.R. Rebman and W. Watkins, Permanental polynomials of graphs, Linear Algebra Appl. 38 (1981) 273–288. doi:10.1016/0024-3795(81)90026-4
[12] Y. Shi, M. Dehmer, X. Li and I. Gutman, Graph Polynomials (CRC Press, Boca Raton, 2016).
[13] J. Turner, Generalized marix functions and the graph isomorphism problem, SIAM J. Appl. Math. 16 (1968) 520–526. doi:10.1137/0116041
[14] T. Wu and H. Zhang, Per-spectral and adjacency spectral characterizations of a complete graph removing six edges, Discrete Appl. Math. 203 (2016) 158–170. doi:10.1016/j.dam.2015.09.014
[15] W. Yan and F. Zhang, On the permanental polynomials of some graphs, J. Math. Chem. 35 (2004) 175–188. doi:10.1023/B:JOMC.0000033254.54822.f8
[16] H. Zhang and W. Li, Computing the permanental polynomials of bipartite graphs by Pfaffian orientation, Discrete Appl. Math. 160 (2012) 2069–2074. doi:10.1016/j.dam.2012.04.007
[17] H. Zhang, S. Liu and W. Li, A note on the permanental roots of bipartite graphs, Discuss. Math. Graph Theory 34 (2014) 49–56. doi:10.7151/dmgt.1704
[18] H. Zhang, T. Wu and H. Lai, Per-spectral characterizations of some edge-deleted subgraphs of a complete graph, Linear Multilinear Algebra 63 (2015) 397–410. doi:10.1080/03081087.2013.869592