The Graphs Whose Permanental Polynomials Are Symmetric
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 233-243.

Voir la notice de l'article provenant de la source Library of Science

The permanental polynomial π (G,x) = Σ_i=0^n b_i x^n − i of a graph G is symmetric if b_i = b_n−i for each i. In this paper, we characterize the graphs with symmetric permanental polynomials. Firstly, we introduce the rooted product H(K) of a graph H by a graph K, and provide a way to compute the permanental polynomial of the rooted product H(K). Then we give a sufficient and necessary condition for the symmetric polynomial, and we prove that the permanental polynomial of a graph G is symmetric if and only if G is the rooted product of a graph by a path of length one.
Keywords: permanental polynomial, rooted product, matching
@article{DMGT_2018_38_1_a18,
     author = {Li, Wei},
     title = {The {Graphs} {Whose} {Permanental} {Polynomials} {Are} {Symmetric}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/}
}
TY  - JOUR
AU  - Li, Wei
TI  - The Graphs Whose Permanental Polynomials Are Symmetric
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 233
EP  - 243
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/
LA  - en
ID  - DMGT_2018_38_1_a18
ER  - 
%0 Journal Article
%A Li, Wei
%T The Graphs Whose Permanental Polynomials Are Symmetric
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 233-243
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/
%G en
%F DMGT_2018_38_1_a18
Li, Wei. The Graphs Whose Permanental Polynomials Are Symmetric. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 233-243. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/

[1] M. Borowiecki and T. Jóźwiak, Computing the permanental polynomial of a multi-graph, Discuss. Math. 5 (1982) 9–16.

[2] M. Borowiecki and T. Jóźwiak, A note on characteristic and permanental polynomials of multigraphs, in: Graph Theory, M. Borowiecki, J.W. Kenendy and M.M. Syslo (Ed(s)), (Springer-Verlag, Berlin, 1983) 75–78. doi:10.1007/bfb0071615

[3] M. Borowiecki, On spectrum and per-spectrum of graphs, Publ. Inst. Math. (Beograd) (N.S.) 38 (1985) 31–33.

[4] Q. Chou, H. Liang and F. Bai, Computing the permanental polynomial of the high level fullerene C 70 with high precision, MATCH Commun. Math. Comput. Chem. 73 (2015) 327–336.

[5] D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs (Academic Press, New York, 1980).

[6] I. Gutman and G.G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 45 (2002) 55–70.

[7] W. Li, Graphs whose characteristic and permanental polynomials have coefficients of the same magnitude, Discrete Math. 339 (2016) 2127–2135. doi:10.1016/j.disc.2016.02.019

[8] W. Li and H. Zhang, On the permanental polynomials of matrices, Bull. Malays. Math. Sci. Soc. 38 (2015) 1361–1374. doi:10.1007/s40840-014-0093-x

[9] W. Li and H. Zhang, The permanental polynomials of certain graphs, MATCH Commum. Math. Comput. Chem. 68 (2012) 871–888.

[10] L. Lovász and M.D. Plummer, Matching Theory (Elsevier, Amsterdam, 1986).

[11] R. Merris, K.R. Rebman and W. Watkins, Permanental polynomials of graphs, Linear Algebra Appl. 38 (1981) 273–288. doi:10.1016/0024-3795(81)90026-4

[12] Y. Shi, M. Dehmer, X. Li and I. Gutman, Graph Polynomials (CRC Press, Boca Raton, 2016).

[13] J. Turner, Generalized marix functions and the graph isomorphism problem, SIAM J. Appl. Math. 16 (1968) 520–526. doi:10.1137/0116041

[14] T. Wu and H. Zhang, Per-spectral and adjacency spectral characterizations of a complete graph removing six edges, Discrete Appl. Math. 203 (2016) 158–170. doi:10.1016/j.dam.2015.09.014

[15] W. Yan and F. Zhang, On the permanental polynomials of some graphs, J. Math. Chem. 35 (2004) 175–188. doi:10.1023/B:JOMC.0000033254.54822.f8

[16] H. Zhang and W. Li, Computing the permanental polynomials of bipartite graphs by Pfaffian orientation, Discrete Appl. Math. 160 (2012) 2069–2074. doi:10.1016/j.dam.2012.04.007

[17] H. Zhang, S. Liu and W. Li, A note on the permanental roots of bipartite graphs, Discuss. Math. Graph Theory 34 (2014) 49–56. doi:10.7151/dmgt.1704

[18] H. Zhang, T. Wu and H. Lai, Per-spectral characterizations of some edge-deleted subgraphs of a complete graph, Linear Multilinear Algebra 63 (2015) 397–410. doi:10.1080/03081087.2013.869592