The Graphs Whose Permanental Polynomials Are Symmetric
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 233-243

Voir la notice de l'article provenant de la source Library of Science

The permanental polynomial π (G,x) = Σ_i=0^n b_i x^n − i of a graph G is symmetric if b_i = b_n−i for each i. In this paper, we characterize the graphs with symmetric permanental polynomials. Firstly, we introduce the rooted product H(K) of a graph H by a graph K, and provide a way to compute the permanental polynomial of the rooted product H(K). Then we give a sufficient and necessary condition for the symmetric polynomial, and we prove that the permanental polynomial of a graph G is symmetric if and only if G is the rooted product of a graph by a path of length one.
Keywords: permanental polynomial, rooted product, matching
@article{DMGT_2018_38_1_a18,
     author = {Li, Wei},
     title = {The {Graphs} {Whose} {Permanental} {Polynomials} {Are} {Symmetric}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/}
}
TY  - JOUR
AU  - Li, Wei
TI  - The Graphs Whose Permanental Polynomials Are Symmetric
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 233
EP  - 243
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/
LA  - en
ID  - DMGT_2018_38_1_a18
ER  - 
%0 Journal Article
%A Li, Wei
%T The Graphs Whose Permanental Polynomials Are Symmetric
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 233-243
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/
%G en
%F DMGT_2018_38_1_a18
Li, Wei. The Graphs Whose Permanental Polynomials Are Symmetric. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 233-243. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a18/