Domination Parameters of a Graph and its Complement
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 203-215
Voir la notice de l'article provenant de la source Library of Science
A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.
Keywords:
domination, complement, total domination, connected domination, clique domination, restrained domination
@article{DMGT_2018_38_1_a16,
author = {Desormeaux, Wyatt J. and Haynes, Teresa W. and Henning, Michael A.},
title = {Domination {Parameters} of a {Graph} and its {Complement}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {203--215},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/}
}
TY - JOUR AU - Desormeaux, Wyatt J. AU - Haynes, Teresa W. AU - Henning, Michael A. TI - Domination Parameters of a Graph and its Complement JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 203 EP - 215 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/ LA - en ID - DMGT_2018_38_1_a16 ER -
%0 Journal Article %A Desormeaux, Wyatt J. %A Haynes, Teresa W. %A Henning, Michael A. %T Domination Parameters of a Graph and its Complement %J Discussiones Mathematicae. Graph Theory %D 2018 %P 203-215 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/ %G en %F DMGT_2018_38_1_a16
Desormeaux, Wyatt J.; Haynes, Teresa W.; Henning, Michael A. Domination Parameters of a Graph and its Complement. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 203-215. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/