Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a16, author = {Desormeaux, Wyatt J. and Haynes, Teresa W. and Henning, Michael A.}, title = {Domination {Parameters} of a {Graph} and its {Complement}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {203--215}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/} }
TY - JOUR AU - Desormeaux, Wyatt J. AU - Haynes, Teresa W. AU - Henning, Michael A. TI - Domination Parameters of a Graph and its Complement JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 203 EP - 215 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/ LA - en ID - DMGT_2018_38_1_a16 ER -
%0 Journal Article %A Desormeaux, Wyatt J. %A Haynes, Teresa W. %A Henning, Michael A. %T Domination Parameters of a Graph and its Complement %J Discussiones Mathematicae. Graph Theory %D 2018 %P 203-215 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/ %G en %F DMGT_2018_38_1_a16
Desormeaux, Wyatt J.; Haynes, Teresa W.; Henning, Michael A. Domination Parameters of a Graph and its Complement. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 203-215. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/
[1] K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711–712. doi:10.1090/S0002-9904-1976-14122-5
[2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194–197. doi:10.1017/S030500410002168X
[3] F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory (Prentice Hall Inc., New Jersey, 2003).
[4] Y. Caro, D.B. West and R. Yuster, Connected domination and spanning trees with many leaves, SIAM J. Discrete Math. 13 (2000) 202–211. doi:10.1137/S0895480199353780
[5] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition (Chapman and Hall/CRC, 2010) pp. 598.
[6] B. Das and V. Bhargavan, Routing in ad-hoc networks using minimum connected dominating sets, IEEE International Conference on Communications (ICC 97), June 1997. doi:10.1109/ICC.1997.605303
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[9] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32–63. doi:10.1016/j.disc.2007.12.044
[10] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).
[11] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un graphe simple, C.R. Acad. Sci. Paris 274 (1972) 728–730.
[12] D. Li, H. Du, P.J. Wan, X. Gao, Z. Zhang and W. Wu, Construction of strongly connected dominating sets in asymmetric multi-hop wireless networks, Theoret. Comput. Sci. 410 (2009) 661–669. doi:10.1016/j.tcs.2008.09.058
[13] H. Karami, A. Khodkar, S.M. Sheikholeslami and D.B. West, Connected domination number of a graph and its complement, Graphs Combin. 28 (2012) 189–197. doi:10.1007/s00373-011-1028-z
[14] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607–613.
[15] O. Schaudt, On graphs for which the connected domination number is at most the total domination number, Discrete Appl. Math. 160 (2012) 281–284. doi:10.1016/j.dam.2011.12.025
[16] V.G. Vizing, A bound on the external stability number of a graph, Dokl. Akad. Nauk 164 (1965) 729–731.
[17] J. Wu and H. Li, On calculating connected dominating set for efficient routing in ad hoc wireless networks, in: Proc. 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications ACM (1999) 7–14. doi:10.1145/313239.313261