Domination Parameters of a Graph and its Complement
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 203-215

Voir la notice de l'article provenant de la source Library of Science

A dominating set in a graph G is a set S of vertices such that every vertex in V (G) S is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.
Keywords: domination, complement, total domination, connected domination, clique domination, restrained domination
@article{DMGT_2018_38_1_a16,
     author = {Desormeaux, Wyatt J. and Haynes, Teresa W. and Henning, Michael A.},
     title = {Domination {Parameters} of a {Graph} and its {Complement}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {203--215},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/}
}
TY  - JOUR
AU  - Desormeaux, Wyatt J.
AU  - Haynes, Teresa W.
AU  - Henning, Michael A.
TI  - Domination Parameters of a Graph and its Complement
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 203
EP  - 215
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/
LA  - en
ID  - DMGT_2018_38_1_a16
ER  - 
%0 Journal Article
%A Desormeaux, Wyatt J.
%A Haynes, Teresa W.
%A Henning, Michael A.
%T Domination Parameters of a Graph and its Complement
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 203-215
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/
%G en
%F DMGT_2018_38_1_a16
Desormeaux, Wyatt J.; Haynes, Teresa W.; Henning, Michael A. Domination Parameters of a Graph and its Complement. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 203-215. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a16/