Core Index of Perfect Matching Polytope for a 2-Connected Cubic Graph
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 189-201.

Voir la notice de l'article provenant de la source Library of Science

For a 2-connected cubic graph G, the perfect matching polytope P(G) of G contains a special point x^c = ( 13,13,…,13). The core index ϕ(P(G)) of the polytope P(G) is the minimum number of vertices of P(G) whose convex hull contains x^c. The Fulkerson’s conjecture asserts that every 2-connected cubic graph G has six perfect matchings such that each edge appears in exactly two of them, namely, there are six vertices of P(G) such that x^c is the convex combination of them, which implies that ϕ(P(G)) ≤ 6. It turns out that the latter assertion in turn implies the Fan-Raspaud conjecture: In every 2-connected cubic graph G, there are three perfect matchings M_1, M_2, and M_3 such that M_1 ∩ M_2 ∩ M_3 = ∅. In this paper we prove the Fan-Raspaud conjecture for ϕ(P(G)) ≤ 12 with certain dimensional conditions.
Keywords: Fulkerson’s conjecture, Fan-Raspaud conjecture, cubic graph, perfect matching polytope, core index
@article{DMGT_2018_38_1_a15,
     author = {Wang, Xiumei and Lin, Yixun},
     title = {Core {Index} of {Perfect} {Matching} {Polytope} for a {2-Connected} {Cubic} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {189--201},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a15/}
}
TY  - JOUR
AU  - Wang, Xiumei
AU  - Lin, Yixun
TI  - Core Index of Perfect Matching Polytope for a 2-Connected Cubic Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 189
EP  - 201
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a15/
LA  - en
ID  - DMGT_2018_38_1_a15
ER  - 
%0 Journal Article
%A Wang, Xiumei
%A Lin, Yixun
%T Core Index of Perfect Matching Polytope for a 2-Connected Cubic Graph
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 189-201
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a15/
%G en
%F DMGT_2018_38_1_a15
Wang, Xiumei; Lin, Yixun. Core Index of Perfect Matching Polytope for a 2-Connected Cubic Graph. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 189-201. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a15/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, Berlin, 2008).

[2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468–488. doi:10.1016/j.jctb.2013.05.001

[3] M.H. de Carvalho, C.L. Lucchesi and U.S.R. Murty, Graphs with independent perfect matchings, J. Graph Theory 48 (2005) 19–50. doi:10.1002/jgt.20036

[4] J. Edmonds, L. Lovász and W.R. Pulleyblank, Brick decompositions and matching rank of graphs, Combinatorica 2 (1982) 247–274. doi:10.1007/BF02579233

[5] G. Fan and A. Raspaud, Fulkerson’s conjecture and circuit covers, J. Combin. Theory Ser. B 61 (1994) 133–138. doi:10.1006/jctb.1994.1039

[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 4th Edition (Springer-Verlag, Berlin, 2008).

[7] L. Lovász and M.D. Plummer, Matching Theory (Elsevier Science Publishers, B.V. North Holland, 1986).

[8] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer-Verlag, Berlin, 2003).

[9] X. Wang and Y. Lin, Three-matching intersection conjecture for perfect matching polytopes of small dimensions, Theoret. Comput. Sci. 482 (2013) 111–114. doi:10.1016/j.tcs.2013.02.023