On the Number of α-Labeled Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 177-188

Voir la notice de l'article provenant de la source Library of Science

When a graceful labeling of a bipartite graph places the smaller labels in one of the stable sets of the graph, it becomes an α-labeling. This is the most restrictive type of difference-vertex labeling and it is located at the very core of this research area. Here we use an extension of the adjacency matrix to count and classify α-labeled graphs according to their size, order, and boundary value.
Keywords: α -labeling, α -graph, graceful triangle
@article{DMGT_2018_38_1_a14,
     author = {Barrientos, Christian and Minion, Sarah},
     title = {On the {Number} of {\ensuremath{\alpha}-Labeled} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/}
}
TY  - JOUR
AU  - Barrientos, Christian
AU  - Minion, Sarah
TI  - On the Number of α-Labeled Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 177
EP  - 188
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/
LA  - en
ID  - DMGT_2018_38_1_a14
ER  - 
%0 Journal Article
%A Barrientos, Christian
%A Minion, Sarah
%T On the Number of α-Labeled Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 177-188
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/
%G en
%F DMGT_2018_38_1_a14
Barrientos, Christian; Minion, Sarah. On the Number of α-Labeled Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 177-188. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/