On the Number of α-Labeled Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 177-188.

Voir la notice de l'article provenant de la source Library of Science

When a graceful labeling of a bipartite graph places the smaller labels in one of the stable sets of the graph, it becomes an α-labeling. This is the most restrictive type of difference-vertex labeling and it is located at the very core of this research area. Here we use an extension of the adjacency matrix to count and classify α-labeled graphs according to their size, order, and boundary value.
Keywords: α -labeling, α -graph, graceful triangle
@article{DMGT_2018_38_1_a14,
     author = {Barrientos, Christian and Minion, Sarah},
     title = {On the {Number} of {\ensuremath{\alpha}-Labeled} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/}
}
TY  - JOUR
AU  - Barrientos, Christian
AU  - Minion, Sarah
TI  - On the Number of α-Labeled Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 177
EP  - 188
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/
LA  - en
ID  - DMGT_2018_38_1_a14
ER  - 
%0 Journal Article
%A Barrientos, Christian
%A Minion, Sarah
%T On the Number of α-Labeled Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 177-188
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/
%G en
%F DMGT_2018_38_1_a14
Barrientos, Christian; Minion, Sarah. On the Number of α-Labeled Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 177-188. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a14/

[1] B.D. Acharya and S.M. Hegde, On certain vertex valuations of a graph, Indian J. Pure Appl. Math. 22 (1991) 553–560.

[2] V. Ajtha, S. Arumugam and K.A. Germina, On square sum graphs, AKCE Int. J. Graphs Comb. 6 (2009) 1–10.

[3] M. Bača and C. Barrientos, Graceful and edge-antimagic labelings, Ars Combin. 96 (2010) 505–513.

[4] C. Barrientos and E. Krop, Mean graphs, AKCE Int. J. Graphs Comb. 11 (2014) 13–26.

[5] C. Barrientos and S. Minion, Enumerating families of labeled graphs, J. Integer Seq. 18 (2015) 15.1.7.

[6] C. Barrientos and S. Minion, Three graceful operations, J. Algorithms Comput. 45 (2014) 13–24.

[7] C. Bu and J. Zhang, The properties of ( k, d )- graceful graphs, preprint (2014).

[8] G.J. Chang, D.F. Hsu and D.G. Rogers, Additive variations on a graceful theme: some results on harmonious and other related graphs, Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol. I (Baton Rouge, LA., 1981), Congr. Numer. 32 (1981) 181–197.

[9] G. Chartrand and L. Lesniak, Graphs and Digraphs (Wadsworth and Brooks/Cole, 1986).

[10] W.C. Chen, H.I. Lü and Y.N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bull. Math. 21 (1997) 337–348.

[11] R. Figueroa-Centeno, R. Ichishima and F. Muntaner-Batle, The place of super edgemagic labelings among other classes of labelings, Discrete Math. 231 (2001) 153–168. doi:10.1016/S0012-365X(00)00314-9

[12] H. Fukś and L. Sullivan, Numeration of number-conserving cellular automata rules with two inputs, J. Cell. Autom. 2 (2007) 141–148.

[13] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2015) #DS6.

[14] R.B. Gnanajothi, Topics in Graph Theory (Ph.D. Thesis, Madurai Kamaraj University, 1991).

[15] T. Grace, On sequential labelings of graphs, J. Graph Theory 7 (1983) 195–201. doi:10.1002/jgt.3190070208

[16] D. Jungreis and M. Reid, Labeling grids, Ars Combin. 34 (1992) 167–182.

[17] M. Maheo and H. Thuillier, On d-graceful graphs, Ars Combin. 13 (1982) 181–192.

[18] OEIS Foundation Inc., The Online Encyclopedia of Integer Sequences (2015). http://oeis.org

[19] D.A. Sheppard, The factorial representation of major balanced graphs, Discrete Math. 15 (1976) 379–388. doi:10.1016/0012-365X(76)90051-0

[20] C.-L. Shiue and H.-C. Lu, Trees which admit no α-labelings, Ars Combin. 103 (2012) 453–463.

[21] Y. Yuansheng, X. Yue, X. Xirong and M. Xinhong, Super edge magic labelings of book graphs, Ars Combin. 93 (2009) 431–438.