Sharp Upper Bounds on the Clar Number of Fullerene Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 155-163
Voir la notice de l'article provenant de la source Library of Science
The Clar number of a fullerene graph with n vertices is bounded above by n // 6 − 2 and this bound has been improved to n//6 − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.
Keywords:
fullerene, Clar number, Clar set, leapfrog transformation
@article{DMGT_2018_38_1_a12,
author = {Gao, Yang and Zhang, Heping},
title = {Sharp {Upper} {Bounds} on the {Clar} {Number} of {Fullerene} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {155--163},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/}
}
TY - JOUR AU - Gao, Yang AU - Zhang, Heping TI - Sharp Upper Bounds on the Clar Number of Fullerene Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 155 EP - 163 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/ LA - en ID - DMGT_2018_38_1_a12 ER -
Gao, Yang; Zhang, Heping. Sharp Upper Bounds on the Clar Number of Fullerene Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 155-163. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/