Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a12, author = {Gao, Yang and Zhang, Heping}, title = {Sharp {Upper} {Bounds} on the {Clar} {Number} of {Fullerene} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {155--163}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/} }
TY - JOUR AU - Gao, Yang AU - Zhang, Heping TI - Sharp Upper Bounds on the Clar Number of Fullerene Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 155 EP - 163 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/ LA - en ID - DMGT_2018_38_1_a12 ER -
Gao, Yang; Zhang, Heping. Sharp Upper Bounds on the Clar Number of Fullerene Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 155-163. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/
[1] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Oxford University Press, Oxford, 1995).
[2] Y. Gao and H. Zhang, The Clar number of fullerenes on surfaces, MATCH Commun. Math. Comput. Chem. 72 (2014) 411–426.
[3] Y. Gao and H. Zhang, Clar structure and Fries set of fullerenes and (4, 6)- fullerenes on surfaces, J. Appl. Math. (2014) Article ID 196792, 11 pages.
[4] Y. Gao, Q. Li and H. Zhang, Fullerenes with the maximum Clar number, Discrete Appl. Math. 202 (2016) 58–69. doi:10.1016/j.dam.2015.08.007
[5] C. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001). doi:10.1007/978-1-4613-0163-9
[6] B. Grünbaum and T. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963) 744–751. doi:10.4153/CJM-1963-071-3
[7] E. Hartung, Fullerenes with complete Clar structure, Discrete Appl. Math. 161 (2013) 2952–2957. doi:10.1016/j.dam.2013.06.009
[8] T. Pisanski and M. Randić, Bridges between geometry and graph theory, in: Geometry at Work: Papers in Applied Geometry Vol. 53, C.A. Gorini (Ed(s)), (Washington, DC, Mathematical Association of America, 2000) 174–194.
[9] D. Ye and H. Zhang, Extremal fullerene graphs with the maximum Clar number, Discrete Appl. Math. 157 (2009) 3152–3173. doi:10.1016/j.dam.2009.06.007
[10] H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996) 147–167. doi:10.1016/0166-218X(95)00081-2
[11] H. Zhang and D. Ye, An upper bound for Clar number of fullerene graphs, J. Math. Chem. 42 (2007) 123–133. doi:10.1007/s10910-006-9061-5
[12] H. Zhang, D. Ye and Y. Liu, A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C60, J. Math. Chem. 48 (2010) 733–740. doi:10.1007/s10910-010-9706-2