Sharp Upper Bounds on the Clar Number of Fullerene Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 155-163.

Voir la notice de l'article provenant de la source Library of Science

The Clar number of a fullerene graph with n vertices is bounded above by n // 6 − 2 and this bound has been improved to n//6 − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.
Keywords: fullerene, Clar number, Clar set, leapfrog transformation
@article{DMGT_2018_38_1_a12,
     author = {Gao, Yang and Zhang, Heping},
     title = {Sharp {Upper} {Bounds} on the {Clar} {Number} of {Fullerene} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/}
}
TY  - JOUR
AU  - Gao, Yang
AU  - Zhang, Heping
TI  - Sharp Upper Bounds on the Clar Number of Fullerene Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 155
EP  - 163
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/
LA  - en
ID  - DMGT_2018_38_1_a12
ER  - 
%0 Journal Article
%A Gao, Yang
%A Zhang, Heping
%T Sharp Upper Bounds on the Clar Number of Fullerene Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 155-163
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/
%G en
%F DMGT_2018_38_1_a12
Gao, Yang; Zhang, Heping. Sharp Upper Bounds on the Clar Number of Fullerene Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 155-163. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a12/

[1] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Oxford University Press, Oxford, 1995).

[2] Y. Gao and H. Zhang, The Clar number of fullerenes on surfaces, MATCH Commun. Math. Comput. Chem. 72 (2014) 411–426.

[3] Y. Gao and H. Zhang, Clar structure and Fries set of fullerenes and (4, 6)- fullerenes on surfaces, J. Appl. Math. (2014) Article ID 196792, 11 pages.

[4] Y. Gao, Q. Li and H. Zhang, Fullerenes with the maximum Clar number, Discrete Appl. Math. 202 (2016) 58–69. doi:10.1016/j.dam.2015.08.007

[5] C. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York, 2001). doi:10.1007/978-1-4613-0163-9

[6] B. Grünbaum and T. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963) 744–751. doi:10.4153/CJM-1963-071-3

[7] E. Hartung, Fullerenes with complete Clar structure, Discrete Appl. Math. 161 (2013) 2952–2957. doi:10.1016/j.dam.2013.06.009

[8] T. Pisanski and M. Randić, Bridges between geometry and graph theory, in: Geometry at Work: Papers in Applied Geometry Vol. 53, C.A. Gorini (Ed(s)), (Washington, DC, Mathematical Association of America, 2000) 174–194.

[9] D. Ye and H. Zhang, Extremal fullerene graphs with the maximum Clar number, Discrete Appl. Math. 157 (2009) 3152–3173. doi:10.1016/j.dam.2009.06.007

[10] H. Zhang and F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996) 147–167. doi:10.1016/0166-218X(95)00081-2

[11] H. Zhang and D. Ye, An upper bound for Clar number of fullerene graphs, J. Math. Chem. 42 (2007) 123–133. doi:10.1007/s10910-006-9061-5

[12] H. Zhang, D. Ye and Y. Liu, A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C60, J. Math. Chem. 48 (2010) 733–740. doi:10.1007/s10910-010-9706-2