The Distance Magic Index of a Graph
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 135-142.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection ϕ : V (G) → S satisfying Σ_ x ∈ N (u) ϕ (x) = k (a constant) for every u ∈ V (G). Let α (S) = max{ s : s ∈ S }. Let i(G) = min α (S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete bipartite graphs.
Keywords: distance magic labeling, distance magic index, S -magic graph, S -magic labeling
@article{DMGT_2018_38_1_a10,
     author = {Godinho, Aloysius and Singh, Tarkeshwar and Arumugam, S.},
     title = {The {Distance} {Magic} {Index} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a10/}
}
TY  - JOUR
AU  - Godinho, Aloysius
AU  - Singh, Tarkeshwar
AU  - Arumugam, S.
TI  - The Distance Magic Index of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 135
EP  - 142
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a10/
LA  - en
ID  - DMGT_2018_38_1_a10
ER  - 
%0 Journal Article
%A Godinho, Aloysius
%A Singh, Tarkeshwar
%A Arumugam, S.
%T The Distance Magic Index of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 135-142
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a10/
%G en
%F DMGT_2018_38_1_a10
Godinho, Aloysius; Singh, Tarkeshwar; Arumugam, S. The Distance Magic Index of a Graph. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 135-142. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a10/

[1] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs—a survey, J. Indones. Math. Soc. Special Edition (2011) 11–26. doi:10.22342/jims.0.0.15.11-26

[2] A. Godinho, T. Singh and S. Arumugam, On S-magic graphs, Electron. Notes Discrete Math. 48 (2015) 267–273. doi:10.1016/j.endm.2015.05.040

[3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2014) #DS6.

[4] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.

[5] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (International Symp., Rome, 1966), (Gordon and Breach, New York and Paris, 1967) 349–355.

[6] D.B. West, Introduction to Graph Theory (Prentice-Hall of India, 1999).