A Characterization for 2-Self-Centered Graphs
Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Library of Science

A graph is called 2-self-centered if its diameter and radius both equal to 2. In this paper, we begin characterizing these graphs by characterizing edge-maximal 2-self-centered graphs via their complements. Then we split characterizing edge-minimal 2-self-centered graphs into two cases. First, we characterize edge-minimal 2-self-centered graphs without triangles by introducing specialized bi-independent covering (SBIC) and a structure named generalized complete bipartite graph (GCBG). Then, we complete characterization by characterizing edge-minimal 2-self-centered graphs with some triangles. Hence, the main characterization is done since a graph is 2-self-centered if and only if it is a spanning subgraph of some edge-maximal 2-self-centered graphs and, at the same time, it is a spanning supergraph of some edge-minimal 2-self-centered graphs.
Keywords: self-centered graphs, specialized bi-independent covering (SBIC), generalized complete bipartite graphs (GCB)
@article{DMGT_2018_38_1_a1,
     author = {Shekarriz, Mohammad Hadi and Mirzavaziri, Madjid and Mirzavaziri, Kamyar},
     title = {A {Characterization} for {2-Self-Centered} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a1/}
}
TY  - JOUR
AU  - Shekarriz, Mohammad Hadi
AU  - Mirzavaziri, Madjid
AU  - Mirzavaziri, Kamyar
TI  - A Characterization for 2-Self-Centered Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2018
SP  - 27
EP  - 37
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a1/
LA  - en
ID  - DMGT_2018_38_1_a1
ER  - 
%0 Journal Article
%A Shekarriz, Mohammad Hadi
%A Mirzavaziri, Madjid
%A Mirzavaziri, Kamyar
%T A Characterization for 2-Self-Centered Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2018
%P 27-37
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a1/
%G en
%F DMGT_2018_38_1_a1
Shekarriz, Mohammad Hadi; Mirzavaziri, Madjid; Mirzavaziri, Kamyar. A Characterization for 2-Self-Centered Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/DMGT_2018_38_1_a1/

[1] J. Akiyama, K. Ando and D. Avis, Miscellaneous properties of equi-eccentric graphs, in: Convexity and Graph Theory (Jerusalem, 1981), North-Holland Math. Stud., Amsterdam 87 (1984) 13–23. doi:10.1016/s0304-0208(08)72802-0

[2] K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, I. Peterin and A.R. Subhamathi, Almost self-centered median and chordal graphs, Taiwanese J. Math. 16 (2012) 1911–1922.

[3] F. Buckley, Self-centered graphs, in: Graph Theory and Its Applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. 576 (1989) 71–78. doi:10.1111/j.1749-6632.1989.tb16384.x

[4] F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427–434. doi:10.1002/jgt.3190050413

[5] J.L. Gross, J. Yellen and P. Zhang, Handbook of Graph Theory, Second Edition (CRC Press., 2014).

[6] S. Klavžar, K.P. Narayankar and H.B. Walikar, Almost self-centered graphs, Acta Math. Sin. (Engl. Ser.) 27 (2011) 2343–2350.

[7] S. Negami and G.H. Xu, Locally geodesic cycles in 2- self-centered graphs, Discrete Math. 58 (1986)263–268. doi:10.1007/s10114-011-9628-3