A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 975-988

Voir la notice de l'article provenant de la source Library of Science

The generalized k-connectivity κ_k (G) of a graph G, mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λ_k (G) = min{λ_G (S) | S ⊆ V (G) and |S| = k }, where λ_G (S) denote the maximum number 𝓁 of pairwise edge-disjoint trees T_1, T_2, . . ., T_𝓁 in G such that S ⊆ V (T_i) for 1 ≤ i ≤𝓁. In this paper we get a sharp lower bound for the generalized 3-edge-connectivity of the strong product of any two connected graphs.
Keywords: generalized connectivity, generalized edge-connectivity, strong product
@article{DMGT_2017_37_4_a8,
     author = {Sun, Yuefang},
     title = {A {Sharp} {Lower} {Bound} {For} {The} {Generalized} {3-Edge-Connectivity} {Of} {Strong} {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {975--988},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/}
}
TY  - JOUR
AU  - Sun, Yuefang
TI  - A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 975
EP  - 988
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/
LA  - en
ID  - DMGT_2017_37_4_a8
ER  - 
%0 Journal Article
%A Sun, Yuefang
%T A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 975-988
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/
%G en
%F DMGT_2017_37_4_a8
Sun, Yuefang. A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 975-988. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/