Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_4_a8, author = {Sun, Yuefang}, title = {A {Sharp} {Lower} {Bound} {For} {The} {Generalized} {3-Edge-Connectivity} {Of} {Strong} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {975--988}, publisher = {mathdoc}, volume = {37}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/} }
TY - JOUR AU - Sun, Yuefang TI - A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 975 EP - 988 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/ LA - en ID - DMGT_2017_37_4_a8 ER -
Sun, Yuefang. A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 975-988. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a8/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244 (Springer, Berlin, 2008).
[2] B. Breˇsar and S. Špacapan, Edge-connectivity of strong products of graphs, Discuss. Math. Graph Theory 27 (2007) 333-343. doi: 10.7151/dmgt.1365
[3] G. Chartrand, S.F. Kappor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[4] W.S. Chiue and B.S. Shieh, On connectivity of the Cartesian product of two graphs, Appl. Math. Comput. 102 (1999) 129-137. doi: 10.1016/S0096-3003(98)10041-3
[5] D.P. Day, O.R. Oellermann and H.C. Swart, The ℓ-connectivity function of trees and complete multipartite graphs, J. Combin. Math. Combin. Comput. 10 (1991) 183-192.
[6] D. Du and X. Hu, Steiner Tree Problems in Computer Communication Networks (World Scientific, 2008). doi: 10.1142/6729
[7] M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program. 78 (1997) 265-281. doi: 10.1007/BF02614374
[8] M. Grötschel, A. Martin and R. Weismantel, Packing Steiner trees: A cutting plane algorithm and commputational results, Math. Program. 72 (1996) 125-145. doi: 10.1007/BF02592086
[9] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38 (1985) 179-189. doi: 10.1016/0095-8956(85)90083-8
[10] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, 2011).
[11] W. Imrich and S. Klavžar, Product Graphs-Structure and Recognition (Wiley, New York, 2000).
[12] W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product (A K Peters, 2008).
[13] S. Klavžar and S. Špacapan, On the edge-connectivity of Cartesian product graphs, Asian-Eur. J. Math. 1 (2008) 93-98.
[14] H. Li, X. Li, Y. Mao and Y. Sun, Note on the generalized connectivity, Ars Combin. 114 (2014) 193-202.
[15] H. Li, X. Li and Y. Sun, The generalized 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14 (2012) 43-54.
[16] X. Li and Y. Mao, A survey on the generalized connectivity of graphs. arXiv:1207.1838[math.CO]
[17] X. Li and Y. Mao, On extremal graphs with at most ℓ internally disjoin Steiner trees connecting any n − 1 vertices, Graphs Combin. 31 (2015) 1-29. doi: 10.1007/s00373-014-1465-6
[18] X. Li and Y. Mao, The generalized 3-connectivity of lexicographic product graphs, Discrete Math. Theor. Comput. Sci. 16 (2014) 339-354. doi: 10.1007/978-3-319-12691-3 31
[19] X. Li and Y. Mao, Nordhaus-Gaddum-type results for the generalized edge- connectivity of graphs, Discrete Appl. Math. 185 (2015) 102-112. doi: 10.1016/j.dam.2014.12.009
[20] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Combin. 58 (2014) 304-319.
[21] X. Li, Y. Mao and L. Wang, Graphs with large generalized 3-edge-connectivity. arXiv:1201.3699v1 [math.CO]
[22] X. Li, J. Yue, and Y. Zhao, The generalized 3-edge-connectivity of lexicographic product graphs, Proc. COCOA 2014, Lecture Notes in Comput. Sci. 8881 (2014) 412-425. doi: 10.1007/978-3-319-12691-3 31
[23] B. Liouville, Sur la connectivité des produits de graphes, C.R. Acad. Sci. Paris Sér. A-B 286 (1978) A363-A365.
[24] O.R. Oellermann, On the ℓ-connectivity of a graph, Graphs Combin. 3 (1987) 285-299. doi: 10.1007/BF01788551
[25] O.R. Oellermann, A note on the ℓ-connectivity function of a graph, Congr. Numer. 60 (1987) 181-188.
[26] G. Sabidussi, Graphs with given group and given graph theoretical properties, Canadian J. Math. 9 (1957) 515-525. doi: 0.4153/CJM-1957-060-7
[27] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition (Kluwar Acad. Pub., London, 1999).
[28] Y. Sun, Generalized 3-(edge)-connectivity for undirected double-loop networks, J. Discrete Math. Sci. Cryptogr. 17 (2014) 19-28. doi: 10.1080/09720529.2013.867672
[29] Y. Sun, Generalized 3-edge-connectivity of Cartesian product graphs, Czechoslovak Math. J. 65 (2015) 107-117. doi: 10.1007/s10587-015-0162-9
[30] Y. Sun, Generalized 3-connectivity and 3-edge-connectivity for the Cartesian prod- ucts of some graph classes, J. Combin. Math. Combin. Comput. 94 (2015) 215-225.
[31] Y. Sun, Maximum generalized local connectivities of cubic Cayley graphs on Abelian groups, J. Combin. Math. Combin. Comput. 94 (2015) 227-236.
[32] Y. Sun, Sharp upper bounds for generalized edge-connectivity of product graphs, Discuss. Math. Graph Theory 36 (2016) 833-843. doi: 10.7151/dmgt.1924
[33] Y. Sun, On the maximum and minimum sizes of a graph with given k-connectivity, Discuss. Math. Graph Theory 37 (2017) 623-632. doi: 10.7151/dmgt.1941
[34] Y. Sun and X. Li, On the difference of two generalized connectivities of a graph, J. Comb. Optim. 33 (2017) 283-291. doi: 10.1007/s10878-015-9956-9.
[35] Y. Sun and S. Zhou, Tree connectivities of Cayley graphs on Abelian groups with small degrees, Bull. Malays. Math. Sci. Soc. 39 (2016) 1673-1685. doi: 10.1007/s40840-015-0147-8.
[36] S. Špacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett. 21 (2008) 682-685. doi: 10.1016/j.aml.2007.06.010
[37] S. Špacapan, Connectivity of strong products of graphs, Graphs Combin. 26 (2010) 457-467. doi: 10.1007/s00373-010-0919-8
[38] J. Xu and C. Yang, Connectivity of Cartesian product graphs, Discrete Math. 306 (2006) 159-165. doi: 10.1016/j.disc.2005.11.010