Every 8-Traceable Oriented Graph Is Traceable
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 963-973

Voir la notice de l'article provenant de la source Library of Science

A digraph of order n is k-traceable if n ≥ k and each of its induced subdigraphs of order k is traceable. It is known that if 2 ≤ k ≤ 6, every k-traceable oriented graph is traceable but for k = 7 and for each k ≥ 9, there exist k-traceable oriented graphs that are nontraceable. We show that every 8-traceable oriented graph is traceable.
Keywords: oriented graph, traceable, hypotraceable, k-traceable, generalized tournament
@article{DMGT_2017_37_4_a7,
     author = {Aardt, Susan A. van},
     title = {Every {8-Traceable} {Oriented} {Graph} {Is} {Traceable}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {963--973},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a7/}
}
TY  - JOUR
AU  - Aardt, Susan A. van
TI  - Every 8-Traceable Oriented Graph Is Traceable
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 963
EP  - 973
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a7/
LA  - en
ID  - DMGT_2017_37_4_a7
ER  - 
%0 Journal Article
%A Aardt, Susan A. van
%T Every 8-Traceable Oriented Graph Is Traceable
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 963-973
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a7/
%G en
%F DMGT_2017_37_4_a7
Aardt, Susan A. van. Every 8-Traceable Oriented Graph Is Traceable. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 963-973. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a7/