Constant 2-Labellings And An Application To (R, A, B)-Covering Codes
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 891-918
Voir la notice de l'article provenant de la source Library of Science
We introduce the concept of constant 2-labelling of a vertex-weighted graph and show how it can be used to obtain perfect weighted coverings. Roughly speaking, a constant 2-labelling of a vertex-weighted graph is a black and white colouring of its vertex set which preserves the sum of the weights of black vertices under some automorphisms. We study constant 2-labellings on four types of vertex-weighted cycles. Our results on cycles allow us to determine (r, a, b)-codes in ℤ^2 whenever |a − b| gt; 4, r ≥ 2 and we give the precise values of a and b. This is a refinement of Axenovich’s theorem proved in 2003.
Keywords:
covering codes, weighted codes, infinite grid, vertex-weighted graphs
@article{DMGT_2017_37_4_a3,
author = {Gravier, Sylvain and Vandomme, \`Elise},
title = {Constant {2-Labellings} {And} {An} {Application} {To} {(R,} {A,} {B)-Covering} {Codes}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {891--918},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a3/}
}
TY - JOUR AU - Gravier, Sylvain AU - Vandomme, Èlise TI - Constant 2-Labellings And An Application To (R, A, B)-Covering Codes JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 891 EP - 918 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a3/ LA - en ID - DMGT_2017_37_4_a3 ER -
Gravier, Sylvain; Vandomme, Èlise. Constant 2-Labellings And An Application To (R, A, B)-Covering Codes. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 891-918. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a3/