Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_4_a16, author = {Furm\'anczyk, Hanna and Kubale, Marek and Mkrtchyan, Vahan V.}, title = {Equitable {Colorings} {Of} {Corona} {Multiproducts} {Of} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1079--1094}, publisher = {mathdoc}, volume = {37}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a16/} }
TY - JOUR AU - Furmánczyk, Hanna AU - Kubale, Marek AU - Mkrtchyan, Vahan V. TI - Equitable Colorings Of Corona Multiproducts Of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 1079 EP - 1094 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a16/ LA - en ID - DMGT_2017_37_4_a16 ER -
%0 Journal Article %A Furmánczyk, Hanna %A Kubale, Marek %A Mkrtchyan, Vahan V. %T Equitable Colorings Of Corona Multiproducts Of Graphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 1079-1094 %V 37 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a16/ %G en %F DMGT_2017_37_4_a16
Furmánczyk, Hanna; Kubale, Marek; Mkrtchyan, Vahan V. Equitable Colorings Of Corona Multiproducts Of Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1079-1094. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a16/
[1] H.L. Bodleander and F.V. Fomin, Equitable colorings of bounded treewidth graphs, Theoret. Comput. Sci. 349 (2005) 22-30. doi: 10.1016/j.tcs.2005.09.027
[2] B.L. Chen, M.T. Ko and K.W. Lih, Equitable and m-bounded coloring of split graphs, in: Combinatorics and Computer Science, Lecture Notes in Comput. Sci. 1120 (1996) 1-5. doi: 10.1007/3-540-61576-8 67
[3] B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447. doi: 10.1006/eujc.1994.1047
[4] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322-325. doi: 10.1007/BF01844162
[5] H. Furmánczyk, Equitable coloring of graphs, in: M. Kubale, Ed., Graph Colorings (American Mathematical Society, Providence, Rhode Island, 2004). doi: 10.1090/conm/352/03
[6] H. Furmánczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006) 31-44.
[7] H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013) 103-120.
[8] H. Furmánczyk and M. Kubale, Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, Ars Math. Contemp. 10 (2016) 333-347.
[9] H. Furmánczyk and M. Kubale, Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines, Discrete Appl. Math. (2017), in press. doi: 10.1016/j.dam.2016.01.036
[10] A. Hajnal, E. Szemeredi, Proof of a conjecture of Erd¨os, in: Combinatorial Theory and Its Applications, II, Colloq. Math. Soc. János Bolyai, 4 (North-Holland, Amsterdam, 1970).
[11] H.A. Kierstead, A.V. Kostochka, M. Mydlarz and E. Szemeredi, A fast algorithm for equitable coloring, Combinatorica 30 (2010) 217-224. doi: 10.1007/s00493-010-2483-5
[12] K.W. Lih, Equitable coloring of graphs, in: Handbook of Combinatorial Optimization (Springer, New York, 2013) 1199-1248. doi: 10.1007/978-1-4419-7997-1 25
[13] K.W. Lih and P.L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155-160. doi: 10.1016/0012-365X(94)00092-W
[14] W.H. Lin and G.J. Chang, Equitable colorings of Cartesian products of graphs, Discrete Appl. Math. 160 (2012) 239-247. doi: 10.1016/j.dam.2011.09.020
[15] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922. doi: 10.2307/2319405
[16] K. Nakprasit, Equitable colorings of planar graphs with maximum degree at least nine, Discrete Math. 312 (2012) 1019-1024. doi: 10.1016/j.disc.2011.11.004
[17] W. Wang and K. Zhang, Equitable colorings of line graphs and complete r-partite graphs, Systems Sci. Math. Sci. 13 (2000) 190-194.
[18] H.P. Yap and Y. Zhang, The Equitable Δ-Coloring Conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sin. 25 (1997) 143-149.
[19] H.P. Yap and Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998) 97-105.
[20] X. Zhang and J.-L. Wu, On equitable and equitable list colorings of series-parallel graphs, Discrete Math. 311 (2011) 800-803. doi: 10.1016/j.disc.2011.02.001