Signed Total Roman Edge Domination In Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1039-1053.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a simple graph with vertex set V and edge set E. A signed total Roman edge dominating function of G is a function f : E →−1, 1, 2 satisfying the conditions that (i) Σ_e^′ ∈ N(e) f(e^′) ≥ 1 for each e ∈ E, where N(e) is the open neighborhood of e, and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e^′ for which f(e^′) = 2. The weight of a signed total Roman edge dominating function f is ω(f) = Σ_e ∈ E f(e). The signed total Roman edge domination number γ_stR^' (G) of G is the minimum weight of a signed total Roman edge dominating function of G. In this paper, we first prove that for every tree T of order n ≥ 4, γ_stR^' (T) ≥17−2n/5 and we characterize all extreme trees, and then we present some sharp bounds for the signed total Roman edge domination number. We also determine this parameter for some classes of graphs.
Keywords: signed total Roman dominating function, signed total Roman domination number, signed total Roman edge dominating function, signed total Roman edge domination number
@article{DMGT_2017_37_4_a13,
     author = {Asgharsharghi, Leila and Sheikholeslami, Seyed Mahmoud},
     title = {Signed {Total} {Roman} {Edge} {Domination} {In} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1039--1053},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a13/}
}
TY  - JOUR
AU  - Asgharsharghi, Leila
AU  - Sheikholeslami, Seyed Mahmoud
TI  - Signed Total Roman Edge Domination In Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 1039
EP  - 1053
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a13/
LA  - en
ID  - DMGT_2017_37_4_a13
ER  - 
%0 Journal Article
%A Asgharsharghi, Leila
%A Sheikholeslami, Seyed Mahmoud
%T Signed Total Roman Edge Domination In Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 1039-1053
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a13/
%G en
%F DMGT_2017_37_4_a13
Asgharsharghi, Leila; Sheikholeslami, Seyed Mahmoud. Signed Total Roman Edge Domination In Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 1039-1053. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a13/

[1] H.A. Ahangar, J. Amjadi, S.M. Sheikholeslami, L. Volkmann and Y. Zhao, Signed Roman edge domination numbers in graphs, J. Comb. Optim. 31 (2016) 333-346. doi: 10.1007/s10878-014-9747-8

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[4] H. Karami, A. Khodkar and S.M. Sheikholeslami, Lower bounds on signed edge total domination numbers in graphs, Czechoslovak Math. J. 58 (2008) 595-603. doi: 10.1007/s10587-008-0038-3

[5] V.R. Kulli and D.K. Patwari, On the edge domination number of a graph, in: Proc. of the Symp. on Graph Theory and Combinatorics (Cochin, 1991), Centre Math. Sci. (Trivandrum, 1991) 75-81.

[6] W. Song, L. Miao, H. Wang and Y. Zhao, Maximal matching and edge domination in complete multipartite graphs, Int. J. Comput. Math. 91 (2014) 857-862. doi: 10.1080/00207160.2013.818668

[7] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855-871. doi: 10.1007/s10878-015-9906-6

[8] D.B. West, Introduction to Graph Theory (Second Edition) (Prentice Hall, USA, 2001).

[9] B. Xu, On signed edge total domination numbers of graphs, J. East China Jiaotong Univ. 23 (2006) 129-131.

[10] J.F. Zhao and B.G. Xu, On signed edge total domination numbers of graphs, J. Math. Research & Exposition 31 (2011) 209-214.