On The Roman Domination Stable Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 859-871.

Voir la notice de l'article provenant de la source Library of Science

A Roman dominating function (or just RDF) on a graph G = (V,E) is a function f : V →{ 0, 1, 2 } satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = Σ_ u ∈ V(G) f(u). The Roman domination number of a graph G, denoted by γ_R (G), is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class R_UV R, Discrete Math. Algorithms Appl. 8 (2016) 1650049].
Keywords: Roman domination number, bound
@article{DMGT_2017_37_4_a1,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {On {The} {Roman} {Domination} {Stable} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {859--871},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a1/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - On The Roman Domination Stable Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 859
EP  - 871
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a1/
LA  - en
ID  - DMGT_2017_37_4_a1
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T On The Roman Domination Stable Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 859-871
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a1/
%G en
%F DMGT_2017_37_4_a1
Hajian, Majid; Rad, Nader Jafari. On The Roman Domination Stable Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 859-871. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a1/

[1] E.W. Chambers, W.B. Kinnersley, N. Prince and D.B. West, Extremal Problems for Roman Domination, SIAM J. Discrete Math. 23 (2009) 1575-1586. doi: 10.1137/070699688

[2] M. Chellali and N. Jafari Rad, Trees with unique Roman dominating functions of minimum weight, Discrete Math. Algorithms Appl. 6 (2014) 1450038. doi: 10.1142/S1793830914500384

[3] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi: 10.1016/j.disc.2003.06.004

[4] A. Hansberg, N. Jafari Rad and L. Volkmann, Vertex and edge critical Roman domination in graphs, Util. Math. 92 (2013) 73-88.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[6] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79-95.

[7] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608-619. doi: 10.1007/s10878-012-9482-y

[8] C.-H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386-1391. doi: 10.1016/j.disc.2011.12.021

[9] V. Samodivkin, On the Roman bondage number of graphs on surfaces, Int. J. Graph Theory Appl. 1 (2015) 67-75. doi: 10.1142/S179383091650049X

[10] V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016) 1650049. doi: 10.1142/S179383091650049X

[11] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.