Strong Edge-Coloring Of Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 845-857.

Voir la notice de l'article provenant de la source Library of Science

A strong edge-coloring of a graph is a proper edge-coloring where each color class induces a matching. We denote by χ_s^' (G) the strong chromatic index of G which is the smallest integer k such that G can be strongly edge-colored with k colors. It is known that every planar graph G has a strong edge-coloring with at most 4 Δ (G) + 4 colors [R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211]. In this paper, we show that if G is a planar graph with g ≥ 5, then χ_s^' (G) ≤ 4 Δ (G) − 2 when Δ (G) ≥ 6 and χ_s^' (G) ≤ 19 when Δ (G) = 5, where g is the girth of G.
Keywords: strong edge-coloring, strong chromatic index, planar graph, dis- charging method
@article{DMGT_2017_37_4_a0,
     author = {Song, Wen-Yao and Miao, Lian-Ying},
     title = {Strong {Edge-Coloring} {Of} {Planar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {845--857},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/}
}
TY  - JOUR
AU  - Song, Wen-Yao
AU  - Miao, Lian-Ying
TI  - Strong Edge-Coloring Of Planar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 845
EP  - 857
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/
LA  - en
ID  - DMGT_2017_37_4_a0
ER  - 
%0 Journal Article
%A Song, Wen-Yao
%A Miao, Lian-Ying
%T Strong Edge-Coloring Of Planar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 845-857
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/
%G en
%F DMGT_2017_37_4_a0
Song, Wen-Yao; Miao, Lian-Ying. Strong Edge-Coloring Of Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 845-857. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231-252. doi: 10.1016/0012-365X(92)90678-9

[2] J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov, Strong edge-colouring of sparse planar graphs, Discrete Appl. Math. 179 (2014) 229-234. doi: 10.1016/j.dam.2014.07.006

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York-Amsterdam-Oxford, 1982).

[4] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, Electron. Notes Discrete Math. 49 (2015) 277-284. doi: 10.1016/j.endm.2015.06.038

[5] P. Erd˝os, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81-92. doi: 10.1016/0012-365X(88)90196-3

[6] R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211.

[7] J.L. Fouquet and J.L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141-150.

[8] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory 111 (1984) 247-264.

[9] P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151-160. doi: 10.1002/jgt.3190170204

[10] H. Hudák, B. Luˇzar, R. Soták and R. ˇSkrekovski, Strong edge-coloring of planar graphs, Discrete Math. 324 (2014) 41-49. doi: 10.1016/j.disc.2014.02.002