Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_4_a0, author = {Song, Wen-Yao and Miao, Lian-Ying}, title = {Strong {Edge-Coloring} {Of} {Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {845--857}, publisher = {mathdoc}, volume = {37}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/} }
Song, Wen-Yao; Miao, Lian-Ying. Strong Edge-Coloring Of Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 4, pp. 845-857. http://geodesic.mathdoc.fr/item/DMGT_2017_37_4_a0/
[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231-252. doi: 10.1016/0012-365X(92)90678-9
[2] J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov, Strong edge-colouring of sparse planar graphs, Discrete Appl. Math. 179 (2014) 229-234. doi: 10.1016/j.dam.2014.07.006
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York-Amsterdam-Oxford, 1982).
[4] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, Electron. Notes Discrete Math. 49 (2015) 277-284. doi: 10.1016/j.endm.2015.06.038
[5] P. Erd˝os, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81-92. doi: 10.1016/0012-365X(88)90196-3
[6] R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211.
[7] J.L. Fouquet and J.L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141-150.
[8] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory 111 (1984) 247-264.
[9] P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151-160. doi: 10.1002/jgt.3190170204
[10] H. Hudák, B. Luˇzar, R. Soták and R. ˇSkrekovski, Strong edge-coloring of planar graphs, Discrete Math. 324 (2014) 41-49. doi: 10.1016/j.disc.2014.02.002