Construction of Cospectral Integral Regular Graphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 595-609.

Voir la notice de l'article provenant de la source Library of Science

Graphs G and H are called cospectral if they have the same characteristic polynomial. If eigenvalues are integral, then corresponding graphs are called integral graph. In this article we introduce a construction to produce pairs of cospectral integral regular graphs. Generalizing the construction of G_4(a, b) and G_5(a, b) due to Wang and Sun, we define graphs 𝒢_4(G,H) and 𝒢_5(G,H) and show that they are cospectral integral regular when G is an integral q-regular graph of order m and H is an integral q-regular graph of order (b − 2)m for some integer b ≥ 3.
Keywords: eigenvalue, cospectral graphs, adjacency matrix, integral graphs
@article{DMGT_2017_37_3_a7,
     author = {Bapat, Ravindra B. and Karimi, Masoud},
     title = {Construction of {Cospectral} {Integral} {Regular} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {595--609},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/}
}
TY  - JOUR
AU  - Bapat, Ravindra B.
AU  - Karimi, Masoud
TI  - Construction of Cospectral Integral Regular Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 595
EP  - 609
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/
LA  - en
ID  - DMGT_2017_37_3_a7
ER  - 
%0 Journal Article
%A Bapat, Ravindra B.
%A Karimi, Masoud
%T Construction of Cospectral Integral Regular Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 595-609
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/
%G en
%F DMGT_2017_37_3_a7
Bapat, Ravindra B.; Karimi, Masoud. Construction of Cospectral Integral Regular Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 595-609. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/

[1] K.T. Balińska, M. Kupczyk, S.K. Simić and K.T. Zwierzyński, On generating all integral graphs on 11 vertices, Computer Science Center Report No. 469, Technical University of Poznań (1999/2000) 1–53.

[2] K.T. Balińska, M. Kupczyk, S.K. Simić and K.T. Zwierzyński, On generating all integral graphs on 12 vertices, Computer Science Center Report No. 482, Technical University of Poznań (2001) 1–36.

[3] R.B. Bapat, Graphs and Matrices (Springer, 2014). doi:10.1007/978-1-4471-6569-9

[4] A.E. Brouwer and W. Haemers, Spectra of Graphs (Springer, 2012). doi:10.1007/978-1-4614-1939-6

[5] F.C. Bussemaker and D.M. Cvetković, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd. Publ. Elektrothen 552 (1976) 43–48.

[6] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980).

[7] C.D. Godsil and B.D. McKay, Constructing cospectral graphs, Aequationes Math. 25 (1982) 257–268. doi:10.1007/BF02189621

[8] A.J. Schwenk, Exactly thirteen connected cubic graphs have integral spectra, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Springer, 1978) Lecture Notes in Math. 642 516–533. doi:10.1007/bfb0070407

[9] E.R. van Dam, Graphs with few eigenvalues; an interplay between combinatorics and algebra (Ph.D. Thesis, Tilburg University, Center for Economic Research Dissertation Series, No. 20, 1996).

[10] L. Wang and H. Sun, Infinitely many pairs of cospectral integral regular graphs, Appl. Math. J. Chinese Univ. 26 (2011) 280–286. doi:10.1007/s11766-011-2180-1

[11] L. Wang, X. Li and C. Hoede, Two classes of integral regular graphs, Ars Combin. 76 (2005) 303–319.

[12] D.B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River, NJ, 1996).