Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a7, author = {Bapat, Ravindra B. and Karimi, Masoud}, title = {Construction of {Cospectral} {Integral} {Regular} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {595--609}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/} }
TY - JOUR AU - Bapat, Ravindra B. AU - Karimi, Masoud TI - Construction of Cospectral Integral Regular Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 595 EP - 609 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/ LA - en ID - DMGT_2017_37_3_a7 ER -
Bapat, Ravindra B.; Karimi, Masoud. Construction of Cospectral Integral Regular Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 595-609. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a7/
[1] K.T. Balińska, M. Kupczyk, S.K. Simić and K.T. Zwierzyński, On generating all integral graphs on 11 vertices, Computer Science Center Report No. 469, Technical University of Poznań (1999/2000) 1–53.
[2] K.T. Balińska, M. Kupczyk, S.K. Simić and K.T. Zwierzyński, On generating all integral graphs on 12 vertices, Computer Science Center Report No. 482, Technical University of Poznań (2001) 1–36.
[3] R.B. Bapat, Graphs and Matrices (Springer, 2014). doi:10.1007/978-1-4471-6569-9
[4] A.E. Brouwer and W. Haemers, Spectra of Graphs (Springer, 2012). doi:10.1007/978-1-4614-1939-6
[5] F.C. Bussemaker and D.M. Cvetković, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd. Publ. Elektrothen 552 (1976) 43–48.
[6] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980).
[7] C.D. Godsil and B.D. McKay, Constructing cospectral graphs, Aequationes Math. 25 (1982) 257–268. doi:10.1007/BF02189621
[8] A.J. Schwenk, Exactly thirteen connected cubic graphs have integral spectra, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Springer, 1978) Lecture Notes in Math. 642 516–533. doi:10.1007/bfb0070407
[9] E.R. van Dam, Graphs with few eigenvalues; an interplay between combinatorics and algebra (Ph.D. Thesis, Tilburg University, Center for Economic Research Dissertation Series, No. 20, 1996).
[10] L. Wang and H. Sun, Infinitely many pairs of cospectral integral regular graphs, Appl. Math. J. Chinese Univ. 26 (2011) 280–286. doi:10.1007/s11766-011-2180-1
[11] L. Wang, X. Li and C. Hoede, Two classes of integral regular graphs, Ars Combin. 76 (2005) 303–319.
[12] D.B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River, NJ, 1996).