Characterizing Atoms that Result from Decomposition by Clique Separators
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 587-594.

Voir la notice de l'article provenant de la source Library of Science

A graph is defined to be an atom if no minimal vertex separator induces a complete subgraph; thus, atoms are the graphs that are immune to clique separator decomposition. Atoms are characterized here in two ways: first using generalized vertex elimination schemes, and then as generalizations of 2-connected unichord-free graphs (the graphs in which every minimal vertex separator induces an edgeless subgraph).
Keywords: clique separator, minimal separator, unichord-free graph
@article{DMGT_2017_37_3_a6,
     author = {McKee, Terry A.},
     title = {Characterizing {Atoms} that {Result} from {Decomposition} by {Clique} {Separators}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {587--594},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a6/}
}
TY  - JOUR
AU  - McKee, Terry A.
TI  - Characterizing Atoms that Result from Decomposition by Clique Separators
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 587
EP  - 594
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a6/
LA  - en
ID  - DMGT_2017_37_3_a6
ER  - 
%0 Journal Article
%A McKee, Terry A.
%T Characterizing Atoms that Result from Decomposition by Clique Separators
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 587-594
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a6/
%G en
%F DMGT_2017_37_3_a6
McKee, Terry A. Characterizing Atoms that Result from Decomposition by Clique Separators. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 587-594. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a6/

[1] A. Berry, R. Pogorelcnik and G. Simonet, An introduction to clique minimal separator decomposition, Algorithms 3 (2010) 197–215. doi:10.3390/a3020197

[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796

[3] T. Kloks, Treewidth (Springer Verlag, Berlin, 1994). doi:10.1007/BFb0045375

[4] H.-G. Leimer, Optimal decomposition by clique separators, Discrete Math. 113 (1993) 99–123. doi:10.1016/0012-365X(93)90510-Z

[5] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Complexity of colouring problems restricted to unichord-free and { square,unichord } -free graphs, Discrete Appl. Math. 164 (2014) 191–199. doi:10.1016/j.dam.2012.02.016

[6] T.A. McKee, Independent separator graphs, Util. Math. 73 (2007) 217–224.

[7] T.A. McKee, A new characterization of unichord-free graphs, Discuss. Math. Graph Theory 35 (2015) 765–771. doi:10.7151/dmgt.1831

[8] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802

[9] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221–232. doi:10.1016/0012-365X(85)90051-2

[10] N. Trotignon and K. Vušković, A structure theorem for graphs with no cycle with a unique chord and its consequences, J. Graph Theory 63 (2010) 31–67. doi:10.1002/jgt.20405

[11] H.-J. Voss, Cycles and Bridges in Graphs (Kluwer, Dordrecht, 1991).