Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a5, author = {Carballosa, Walter and Fabila-Monroy, Ruy and Lea\~nos, Jes\'us and Rivera, Luis Manuel}, title = {Regularity and {Planarity} of {Token} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {573--586}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a5/} }
TY - JOUR AU - Carballosa, Walter AU - Fabila-Monroy, Ruy AU - Leaños, Jesús AU - Rivera, Luis Manuel TI - Regularity and Planarity of Token Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 573 EP - 586 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a5/ LA - en ID - DMGT_2017_37_3_a5 ER -
%0 Journal Article %A Carballosa, Walter %A Fabila-Monroy, Ruy %A Leaños, Jesús %A Rivera, Luis Manuel %T Regularity and Planarity of Token Graphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 573-586 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a5/ %G en %F DMGT_2017_37_3_a5
Carballosa, Walter; Fabila-Monroy, Ruy; Leaños, Jesús; Rivera, Luis Manuel. Regularity and Planarity of Token Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 573-586. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a5/
[1] J.M. Boyer and J.W. Myrvold, On the cutting edge: simplified O (n) planarity by edge addition, J. Graph Algorithms Appl. 8 (2004) 241–273. doi:10.7155/jgaa.00091
[2] M. Behzad and S.E. Mahmoodian, On topological invariants of the product of graphs, Canad. Math. Bull. 12 (1969) 175–166. doi:10.4153/CMB-1969-017-3
[3] T. Etzion and S. Bitan, On the chromatic number, colorings, and codes of the Johnson graph, Discrete Appl. Math. 70 (1996) 163–175. doi:10.1016/0166-218X(96)00104-7
[4] R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia and D.R. Wood, Token graphs, Graphs Combin. 28 (2012) 365–380. doi:10.1007/s00373-011-1055-9
[5] R. Graham and N. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory 26 (1980) 37–43. doi:10.1109/TIT.1980.1056141
[6] J. Guo, K. Wang and F. Li, Metric dimension of some distance-regular graphs, J. Comb. Optim. 26 (2013) 190–197. doi:10.1007/s10878-012-9459-x
[7] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[8] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271–283.
[9] R.A. Liebler and C.E. Praeger, Neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr. 73 (2014) 1–25. doi:10.1007/s10623-014-9982-0
[10] B.D. McKay and A. Piperno, Practical graph isomorphism II, J. Symbolic Comput. 60 (2013) 94–112. doi:10.1016/j.jsc.2013.09.003
[11] M. Neunhöffer, and C.E. Praeger, Sporadic neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr. 72 (2014) 141–152. doi:10.1007/s10623-013-9853-0
[12] W.A. Stein, et al., Sage Mathematics Software (Version 6.8), The Sage Development Team, 2015. http://www.sagemath.org .
[13] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570–590. doi:10.1007/BF01594196