Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a4, author = {Yang, Yan and Chen, Yichao}, title = {The {Thickness} of {Amalgamations} and {Cartesian} {Product} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {561--572}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a4/} }
TY - JOUR AU - Yang, Yan AU - Chen, Yichao TI - The Thickness of Amalgamations and Cartesian Product of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 561 EP - 572 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a4/ LA - en ID - DMGT_2017_37_3_a4 ER -
Yang, Yan; Chen, Yichao. The Thickness of Amalgamations and Cartesian Product of Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 561-572. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a4/
[1] A. Aggarwal, M. Klawe and P. Shor, Multilayer grid embeddings for VLSI, Algorithmica 6 (1991) 129–151. doi:10.1007/BF01759038
[2] S. Alpert, The genera of amalgamations of graph, Trans. Amer. Math. Soc. 178 (1973) 1–39. doi:10.1090/S0002-9947-1973-0371698-X
[3] V.B. Alekseev and V.S. Gončhakov, The thickness of an arbitrary complete graph, Math. Sbornik. 30 (1976) 187–202. doi:10.1070/SM1976v030n02ABEH002267
[4] K. Asano, On the genus and thickness of graphs, J. Combin. Theory Ser. B 43 (1987) 287–292. doi:10.1016/0095-8956(87)90004-9
[5] J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962) 565–568. doi:10.1090/S0002-9904-1962-10847-7
[6] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math. 17 (1965) 850–859. doi:10.4153/CJM-1965-084-2
[7] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Math. Proc. Cambridge Philos. Soc. 60 (1964) 1–5. doi:10.1017/S0305004100037385
[8] M. Behzad and S.E. Mahmoodian, On topological invariants of the product of graphs, Canad. Math. Bull. 12 (1969) 157–166. doi:10.4153/CMB-1969-015-9
[9] J.A. Bondy and U.S.R.Murty, Graph Theory (Springer, 2008).
[10] J.E. Chen, S.P. Kanchi and A. Kanevsky, A note on approximating graph genus, Inform. Process Lett. 61 (1997) 317–322. doi:10.1016/S0020-0190(97)00203-2
[11] R.J. Cimikowski, On heuristics for determining the thickness of a graph, Inform. Sci. 85 (1995) 87–98. doi:10.1016/0020-0255(95)00011-D
[12] A.M. Dean, J.P. Hutchinson and E.R. Scheinerman, On the thickness and arboricity of a graph, J. Combin. Theory Ser. B 52 (1991) 147–151. doi:10.1016/0095-8956(91)90100-X
[13] R. Decker, H. Glover and J.P. Huneke, The genus of the 2 -amalgamations of graphs, J. Graph Theory 5 (1981) 95–102. doi:10.1002/jgt.3190050107
[14] J.H. Halton, On the thickness of graphs of given degree, Inform. Sci. 54 (1991) 219–238. doi:10.1016/0020-0255(91)90052-V
[15] A.M. Hobbs, A survey of thickness, in: Recent Progress in Combinatorics (Proc. 3rd Waterloo Conf. on Combinatorics, 1968), W.T. Tutte (Ed(s)), (New York, Academic Press, 1969) 255–264.
[16] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory 3 (1967) 10–15. doi:10.1016/S0021-9800(67)80010-3
[17] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1983) 9–23. doi:10.1017/S030500410006028X
[18] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph, Missouri J. Math. Sci. 24 (2012) 76–87.
[19] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness of graphs: a survey, Graphs Combin. 14 (1998) 59–73. doi:10.1007/PL00007219
[20] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Inform. Sci. 172 (2005) 155–172. doi:10.1016/j.ins.2004.02.029
[21] W.T. Tutte, The thickness of a graph, Indag. Math. 25 (1963) 567–577. doi:10.1016/S1385-7258(63)50055-9
[22] J.M. Vasak, The thickness of the complete graph, Notices Amer. Math. Soc. 23 (1976) A–479.