Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a3, author = {Rodr{\'\i}guez-Vel\'azquez, Juan Alberto and Rodr{\'\i}guez-Bazan, Erick David and Estrada-Moreno, Alejandro}, title = {On {Generalized} {Sierpi\'nski} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {547--560}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a3/} }
TY - JOUR AU - Rodríguez-Velázquez, Juan Alberto AU - Rodríguez-Bazan, Erick David AU - Estrada-Moreno, Alejandro TI - On Generalized Sierpiński Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 547 EP - 560 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a3/ LA - en ID - DMGT_2017_37_3_a3 ER -
%0 Journal Article %A Rodríguez-Velázquez, Juan Alberto %A Rodríguez-Bazan, Erick David %A Estrada-Moreno, Alejandro %T On Generalized Sierpiński Graphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 547-560 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a3/ %G en %F DMGT_2017_37_3_a3
Rodríguez-Velázquez, Juan Alberto; Rodríguez-Bazan, Erick David; Estrada-Moreno, Alejandro. On Generalized Sierpiński Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 547-560. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a3/
[1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: Appl. Discrete Math., R.D. Ringeisen and F.S. Roberts (Ed(s)), (SIAM, Philadelphia, PA, 1988) 189–199.
[2] A. Estrada-Moreno, E.D. Rodríguez-Bazan and J.A. Rodríguez-Velázquez, On the General Randić index of polymeric networks modelled by generalized Sierpiński graphs . arXiv:1510.07982 [math.CO]
[3] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. doi:10.1007/BF01844162
[4] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 2 (1959) 133–138.
[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, NY, USA, 1979).
[6] J. Geetha and K. Somasundaram, Total coloring of generalized Sierpiński graphs, Australas. J. Combin. 63 (2015) 58–69.
[7] S. Gravier, M. Kovše, M. Mollard, J. Moncel and A. Parreau, New results on variants of covering codes in Sierpiński graphs, Des. Codes Cryptogr. 69 (2013) 181–188. doi:10.1007/s10623-012-9642-1
[8] S. Gravier, M. Kovše and A. Parreau, Generalized Sierpiński graphs, in: Posters at EuroComb’11, Rényi Institute, Budapest, 2011. http://www.renyi.hu/conferences/ec11/posters/parreau.pdf
[9] A.M. Hinz and C.H. auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014) 111–120. doi:10.1016/j.dam.2014.05.049
[10] A.M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi—Myths and Maths (Birkhäuser/Springer Basel, 2013).
[11] A.M. Hinz, S. Klavžar and S.S. Zemljič, A survey and classification of Sierpińskitype graphs, submitted. http://www.fmf.uni-lj.si/~klavzar/preprints/Ssurvey-submit.pdf
[12] A.M. Hinz and D. Parisse, The average eccentricity of Sierpiński graphs, Graphs Combin. 28 (2012) 671–686. doi:10.1007/s00373-011-1076-4
[13] S. Klavžar and U. Milutinović, Graphs S ( n, k ) and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47 (1997) 95–104.
[14] S. Klavžar, U. Milutinović and C. Petr, 1 -perfect codes in Sierpiński graphs, Bull. Aust. Math. Soc. 66 (2002) 369–384. doi:10.1017/S0004972700040235
[15] S. Klavžar, I. Peterin and S.S. Zemljič, Hamming dimension of a graph—The case of Sierpiński graphs, European J. Combin. 34 (2013) 460–473. doi:10.1016/j.ejc.2012.09.006
[16] S. Klavžar and S.S. Zemljič, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013) 72–82. doi:10.2298/AADM130109001K
[17] D. Parisse, On some metric properties of the Sierpiński graphs S ( n, k ), Ars Combin. 90 (2009) 145–160.
[18] J.A. Rodríguez-Velázquez and E. Estaji, The strong metric dimension of generalized sierpiński graphs with pendant vertices, Ars Math. Contemp., to appear.
[19] J.A. Rodríguez-Velázquez, J. Tomás-Andreu, On the Randić index of polymeric networks modelled by generalized Sierpiński graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 145–160.