Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a16, author = {Miller, Mirka and Rajan, R. Sundara and Jayagopal, R. and Rajasingh, Indra and Manuel, Paul}, title = {A {Note} on the {Locating-Total} {Domination} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {745--754}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a16/} }
TY - JOUR AU - Miller, Mirka AU - Rajan, R. Sundara AU - Jayagopal, R. AU - Rajasingh, Indra AU - Manuel, Paul TI - A Note on the Locating-Total Domination in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 745 EP - 754 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a16/ LA - en ID - DMGT_2017_37_3_a16 ER -
%0 Journal Article %A Miller, Mirka %A Rajan, R. Sundara %A Jayagopal, R. %A Rajasingh, Indra %A Manuel, Paul %T A Note on the Locating-Total Domination in Graphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 745-754 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a16/ %G en %F DMGT_2017_37_3_a16
Miller, Mirka; Rajan, R. Sundara; Jayagopal, R.; Rajasingh, Indra; Manuel, Paul. A Note on the Locating-Total Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 745-754. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a16/
[1] I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard, Theoret. Comput. Sci. 290 (2003) 2109–2120. doi:10.1016/S0304-3975(02)00536-4
[2] M. Chellali, On Locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383–392. doi:10.7151/dmgt.1414
[3] X. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769–773. doi:10.1016/j.dam.2010.12.025
[4] J.-F. Fang, The bipancycle-connectivity of the hypercube, Inform. Sci. 178 (2008) 4679–4687.
[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Company Publisher, San Francisco, US, 1979).
[6] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293–1300. doi:10.1016/j.dam.2006.01.002
[7] M.A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012) 3107–3116. doi:10.1016/j.disc.2012.06.024
[8] M.A. Henning and N.J. Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986–1993. doi:10.1016/j.dam.2012.04.004
[9] H. Hosoya and F. Harary, On the matching properties of three fence graphs, J. Math. Chem. 12 (1993) 211–218. doi:10.1007/BF01164636
[10] B.N. Omamalin, Locating total dominating sets in the join, corona and composition of graphs, Appl. Math. Sci. 8 (2014) 2363–2374. doi:10.12988/ams.2014.43205
[11] P.J. Slater, Fault-tolerant locating-dominating sets, Discrete Math. 249 (2002) 179–189. doi:10.1016/S0012-365X(01)00244-8
[12] J. Xu, Topological Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, London, UK, 2001). doi:10.1007/978-1-4757-3387-7