Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a15, author = {Huang, Jing and Li, Shuchao}, title = {On the {Spectral} {Characterizations} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {729--744}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a15/} }
Huang, Jing; Li, Shuchao. On the Spectral Characterizations of Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 729-744. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a15/
[1] S. Barik, S. Patiand and B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (2007) 47–56. doi:10.1137/050624029
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, in: Graduate Texts in Mathematics, 244 (Springer, 2008).
[3] R. Boulet, Spectral characterization of sun graphs and broken sun graphs, Discrete Math. Theor. Comput. Sci. 11 (2009) 149–160.
[4] C.J. Bu and J. Zhou, Laplacian spectra characterization of some graphs obtained by product operation, Discrete Math. 312 (2012) 1591–1595. doi:10.1016/j.disc.2012.02.002
[5] C.J. Bu, J. Zhou, H.B. Li and W.Z. Wang, Spectral characterization of the corona of a cycle and two isolated vertices, Graphs Combin. 30 (2014) 1123–1133. doi:10.1007/s00373-013-1327-7
[6] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Semin. Univ. Hambg. 21 (1957) 63–77. doi:10.1007/BF02941924
[7] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications (Academic Press, New York, San Francisco, London, 1980).
[8] D. Cvetković and P. Rowlinson, Spectra of unicyclic graphs, Graphs Combin. 3 (1987) 7–23. doi:10.1007/BF01788525
[9] M. Cámara and W.H. Haemers, Spectral characterizations of almost complete graphs, Discrete Appl. Math. 176 (2014) 19–23. doi:10.1016/j.dam.2013.08.002
[10] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum ? Linear Algebra Appl. 373 (2003) 241–272. doi:10.1016/S0024-3795(03)00483-X
[11] M. Doob, Eigenvalues of graphs, in: L.W. Beineke, R.J. Wilson (Eds.), Topics in Algebraic Graph Theory (Cambridge University Press, 2005).
[12] O. Favaron, M. Mahéo, and J.F. Saclé, Some eigenvalues properties in graphs, Discrete Math. 111 (1993) 197–200. doi:10.1016/0012-365X(93)90156-N
[13] N. Ghareghai, G.R. Omidi and B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most $ \sqrt{ 2 + \sqrt{5} } $, Linear Algebra Appl. 420 (2007) 483–489. doi:10.1016/j.laa.2006.08.009
[14] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, 2001). doi:10.1007/978-1-4613-0163-9
[15] A.K. Kelmans and V.M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combin. Theory Ser. B 16 (1974) 197–214. doi:10.1016/0095-8956(74)90065-3
[16] J.S. Li and X.D. Zhang, On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998) 305–307. doi:10.1016/S0024-3795(98)10149-0
[17] F.J. Liu, Q.X. Huang, J.F. Wang and Q.H. Liu, The spectral characterization of ∞-graphs, Linear Algebra Appl. 437 (2012) 1482–1502. doi:10.1016/j.laa.2012.04.013
[18] M. Mirzakhah and D. Kiani, The sun graph is determined by its signless Laplacian spectrum, Electron. J. Linear Algebra. 20 (2010) 610–620. doi:10.13001/1081-3810.1397
[19] G.R. Omidi and K. Tajbakhsh, Starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007) 654–658. doi:10.1016/j.laa.2006.11.028
[20] V.M. Piet, Graph Spectra for Complex Networks (Cambridge University Press, 2010).
[21] X.L. Shen, Y.P. Hou and Y.P. Zhang, Graph Zn and some graphs related to Zn are determined by their spectrum, Linear Algebra Appl. 404 (2005) 58–68. doi:10.1016/j.laa.2005.01.036
[22] W. Wang and C.X. Xu, On the spectral characterization of T-shape trees, Linear Algebra Appl. 414 (2006) 492–501. doi:10.1016/j.laa.2005.10.031
[23] W. Wang and C.X. Xu, The T-shape tree is determined by its Laplacian spectrum, Linear Algebra Appl. 419 (2006) 78–81. doi:10.1016/j.laa.2006.04.005