Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a13, author = {Li, Binlong and Ning, Bo}, title = {Heavy {Subgraphs,} {Stability} and {Hamiltonicity}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {691--710}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a13/} }
Li, Binlong; Ning, Bo. Heavy Subgraphs, Stability and Hamiltonicity. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 691-710. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a13/
[1] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditons for Hamiltonicity (Ph.D. Thesis, Memphis State University, 1991).
[2] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan’s condition for Hamiltonicity, pancyclicity, and Hamiltonian connectedness, Discrete Math. 115 (1993) 39–50. doi:10.1016/0012-365X(93)90476-A
[3] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory Ser. B 9 (1970) 129–135. doi:10.1016/S0021-9800(70)80019-9
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[5] H.J. Broersma, Z. Ryjáček and I. Schiermeyer, Dirac’s minimum degree condition restricted to claws, Discrete Math. 167/168 (1997) 155–166. doi:10.1016/S0012-365X(96)00224-5
[6] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensuring hamiltonicity or pancyclicity of K 1,3 -free graphs, in: Contemporary Methods in Graph Theory (BI Wissenschaftsverlag, Mannheim 1990) 181–194.
[7] J. Brousek, Minimal 2 -connected non-Hamiltonian claw-free graphs, Discrete Math. 191 (1998) 57–64. doi:10.1016/S0012-365X(98)00093-4
[8] J. Brousek, Z. Ryjáček and O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Math. 196 (1999) 29–50. doi:10.1016/S0012-365X(98)00334-3
[9] G. Chen, B. Wei and X. Zhang, Degree-light-free graphs and hamiltonian cycles, Graphs Combin. 17 (2001) 409–434. doi:10.1007/s003730170018
[10] R. Čada, Degree conditions on induced claws, Discrete Math. 308 (2008) 5622–5631. doi:10.1016/j.disc.2007.10.026
[11] G.A. Dirac, Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952) 69–81. doi:10.1112/plms/s3-2.1.69
[12] D. Duffus, M. Jacboson and R.J. Gould, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Applications of Graphs (Wiley, New York, 1981) 297–316.
[13] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227. doi:10.1016/0095-8956(84)90054-6
[14] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45–60. doi:10.1016/S0012-365X(96)00147-1
[15] R.J. Faudree, R.J. Gould, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs and pancyclicity, Congr. Numer. 109 (1995) 13–32.
[16] R.J. Gould and M.S. Jacobson, Forbidden subgraphs and hamiltonian properties of graphs, Discrete Math. 42 (1982) 189–196. doi:10.1016/0012-365X(82)90216-3
[17] Z. Hu, A generalization of Fan’s condition and forbidden subgraph conditions for hamiltonicity, Discrete Math. 196 (1999) 167–175. doi:10.1016/S0012-365X(98)00200-3
[18] B. Li, Z. Ryjáček, Y. Wang and S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2 -connected graphs, SIAM J. Discrete Math. 26 (2012) 1088–1103. doi:10.1137/11084786X
[19] G. Li, B. Wei and T. Gao, A structural method for Hamiltonian graphs, Australas. J. Combin. 11 (1995) 257–262.
[20] B. Ning and S. Zhang, Ore- and Fan-type heavy subgraphs for hamiltonicity of 2 -connected graphs, Discrete Math. 313 (2013) 1715–1725. doi:10.1016/j.disc.2013.04.023
[21] B. Ning, S. Zhang and B. Li, Solution to a problem on hamiltonicity of graphs under Ore- and Fan-type heavy subgraph conditions, Graphs Combin. 32 (2016) 1125–1135. doi:10.1007/s00373-015-1619-1
[22] O. Ore, Note on Hamilton circuit, Amer. Math. Monthly 67 (1960) 55.
[23] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224. doi:10.1006/jctb.1996.1732