Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a11, author = {Crane, Charles Brian}, title = {Forbidden {Pairs} and (k, {m)-Pancyclicity}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {649--663}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a11/} }
Crane, Charles Brian. Forbidden Pairs and (k, m)-Pancyclicity. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 649-663. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a11/
[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for Hamiltonicity (Ph.D. Thesis, Memphis State University, 1991).
[2] J.A. Bondy, Pancyclic graphs, in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory, and Computing, Ray C. Mullin (Ed(s)), (Louisiana State University, Baton Rouge, LA, 1971) 167–172. doi:10.1016/0095-8956(71)90016-5
[3] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84. doi:10.1016/0095-8956(71)90016-5
[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 5 th Edition (Chapman and Hall/CRC, Boca Raton, FL, 2011).
[5] C.B. Crane, Generalized pancyclic properties in claw-free graphs, Graphs Combin. 31 (2015) 2149–2158. doi:10.1007/s00373-014-1510-5
[6] Y. Egawa, J. Fujisawa, S. Fujita and K. Ota, On 2 -factors in r-connected { K1,k, P4} -free graphs, Tokyo J. Math. 31 (2008) 415–420. doi:10.3836/tjm/1233844061
[7] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45–60. doi:10.1016/S0012-365X(96)00147-1
[8] R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, Generalizing pancyclic and k-ordered graphs, Graphs Combin. 20 (2004) 291–310. doi:10.1007/s00373-004-0576-x
[9] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55. doi:10.2307/2308928