Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a10, author = {Shalu, M.A. and Devi Yamini, S.}, title = {One-Three {Join:} {A} {Graph} {Operation} and {Its} {Consequences}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {633--647}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/} }
TY - JOUR AU - Shalu, M.A. AU - Devi Yamini, S. TI - One-Three Join: A Graph Operation and Its Consequences JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 633 EP - 647 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/ LA - en ID - DMGT_2017_37_3_a10 ER -
Shalu, M.A.; Devi Yamini, S. One-Three Join: A Graph Operation and Its Consequences. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 633-647. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/
[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, NJ, 1993) 409–411.
[2] M. Basavaraju, L.S. Chandran and T. Karthick, Maximum weight independent sets in hole- and dart-free graphs, Discrete Appl. Math. 160 (2012) 2364–2369. doi:10.1016/j.dam.2012.06.015
[3] D. Bienstock, On complexity of testing for odd holes and induced odd paths, Discrete Math. 90 (1991) 85–92. doi:10.1016/0012-365X(91)90098-M
[4] H.L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao and J. Spinrad, On algorithms for { P 5, gem } -free graphs, Theoret. Comput. Sci. 349 (2005) 2–21. doi:10.1016/j.tcs.2005.09.026
[5] A. Brandstädt and V. Giakoumakis, Addendum to: Maximum weighted independent sets in hole- and co-chair-free graphs, Inform. Process. Lett. 115 (2015) 345–350. doi:10.1016/j.ipl.2014.09.019
[6] A. Brandstädt, V. Giakoumakis and F. Maffray, Clique separator decomposition of hole- and diamond-free graphs and algorithmic consequences, Discrete Appl. Math. 160 (2012) 471–478. doi:10.1016/j.dam.2011.10.031
[7] A. Brandstädt and T. Karthick, Weighted efficient domination in two subclasses of P6-free graphs, Discrete Appl. Math. 201 (2016) 38–46. doi:10.1016/j.dam.2015.07.032
[8] A. Brandstädt and R. Mosca, Maximum weight independent sets in odd hole-free graphs without dart or without bull, Graphs Combin. 31 (2015) 1249–1262. doi:10.1007/s00373-014-1461-x
[9] M. Chudnovsky and P. Seymour, The structure of claw-free graphs, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 327 (2005) 153–171.
[10] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51–229. doi:10.4007/annals.2006.164.51
[11] M. Chudnovsky, I. Penev, A. Scott and N. Trotignon, Substitution and χ-boundedness, J. Combin. Theory Ser. B 103 (2013) 567–586. doi:10.1016/j.jctb.2013.02.004
[12] M. Conforti, G. Cornuéjols and K. Vušković, Even-hole-free graphs, Part II: Recognition algorithm, J. Graph Theory 40 (2002) 238–266. doi:10.1002/jgt.10045
[13] M. Conforti, G. Cornuéjols and K. Vušković, Decomposition of odd-hole-free graphs by double star cutsets and 2 -joins, Discrete Appl. Math. 141 (2004) 41–91. doi:10.1016/S0166-218X(03)00364-0
[14] M. Conforti, G. Cornuéjols, X. Liu and K. Vušković and G. Zambelli, Odd-hole recognition in graphs of bounded clique size, SIAM J. Discrete Math. 20 (2006) 42–48. doi:10.1137/S089548010444540X
[15] D.G. Corneil, H. Lerchs and L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174. doi:10.1016/0166-218X(81)90013-5
[16] T. Feder, P. Hell, S. Klein and R. Motwani, Complexity of graph partition problems, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (1999) 464-472. doi:10.1145/301250.301373
[17] T. Feder, P. Hell, S. Klein and R. Motwani, List partitions, SIAM J. Discrete Math. 16 (2003) 449–478. doi:10.1137/S0895480100384055
[18] S. Földes and P.L. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.
[19] M. Grötschel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325–356. doi:10.1016/s0304-0208(08)72943-8
[20] N.C. Lê, C. Brause and I. Schiermeyer, Extending the MAX Algorithm for maximum independent set, Discuss. Math. Graph Theory 35 (2015) 365–386. doi:10.7151/dmgt.1811
[21] R. Mosca, Stable sets for ( P6, K2,3) -free graphs, Discuss. Math. Graph Theory 32 (2012) 387–401. doi:10.7151/dmgt.1598
[22] D.B. West, Introduction to Graph Theory (Prentice Hall, USA, 1996).