One-Three Join: A Graph Operation and Its Consequences
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 633-647.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce a graph operation, namely one-three join. We show that the graph G admits a one-three join if and only if either G is one of the basic graphs (bipartite, complement of bipartite, split graph) or G admits a constrained homogeneous set or a bipartite-join or a join. Next, we define ℳH as the class of all graphs generated from the induced subgraphs of an odd hole-free graph H that contains an odd anti-hole as an induced subgraph by using one-three join and co-join recursively and show that the maximum independent set problem, the maximum clique problem, the minimum coloring problem, and the minimum clique cover problem can be solved efficiently for ℳH.
Keywords: one-three join, bipartite-join, homogeneous set, odd hole-free graphs
@article{DMGT_2017_37_3_a10,
     author = {Shalu, M.A. and Devi Yamini, S.},
     title = {One-Three {Join:} {A} {Graph} {Operation} and {Its} {Consequences}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {633--647},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/}
}
TY  - JOUR
AU  - Shalu, M.A.
AU  - Devi Yamini, S.
TI  - One-Three Join: A Graph Operation and Its Consequences
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 633
EP  - 647
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/
LA  - en
ID  - DMGT_2017_37_3_a10
ER  - 
%0 Journal Article
%A Shalu, M.A.
%A Devi Yamini, S.
%T One-Three Join: A Graph Operation and Its Consequences
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 633-647
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/
%G en
%F DMGT_2017_37_3_a10
Shalu, M.A.; Devi Yamini, S. One-Three Join: A Graph Operation and Its Consequences. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 633-647. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a10/

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, NJ, 1993) 409–411.

[2] M. Basavaraju, L.S. Chandran and T. Karthick, Maximum weight independent sets in hole- and dart-free graphs, Discrete Appl. Math. 160 (2012) 2364–2369. doi:10.1016/j.dam.2012.06.015

[3] D. Bienstock, On complexity of testing for odd holes and induced odd paths, Discrete Math. 90 (1991) 85–92. doi:10.1016/0012-365X(91)90098-M

[4] H.L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao and J. Spinrad, On algorithms for { P 5, gem } -free graphs, Theoret. Comput. Sci. 349 (2005) 2–21. doi:10.1016/j.tcs.2005.09.026

[5] A. Brandstädt and V. Giakoumakis, Addendum to: Maximum weighted independent sets in hole- and co-chair-free graphs, Inform. Process. Lett. 115 (2015) 345–350. doi:10.1016/j.ipl.2014.09.019

[6] A. Brandstädt, V. Giakoumakis and F. Maffray, Clique separator decomposition of hole- and diamond-free graphs and algorithmic consequences, Discrete Appl. Math. 160 (2012) 471–478. doi:10.1016/j.dam.2011.10.031

[7] A. Brandstädt and T. Karthick, Weighted efficient domination in two subclasses of P6-free graphs, Discrete Appl. Math. 201 (2016) 38–46. doi:10.1016/j.dam.2015.07.032

[8] A. Brandstädt and R. Mosca, Maximum weight independent sets in odd hole-free graphs without dart or without bull, Graphs Combin. 31 (2015) 1249–1262. doi:10.1007/s00373-014-1461-x

[9] M. Chudnovsky and P. Seymour, The structure of claw-free graphs, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 327 (2005) 153–171.

[10] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51–229. doi:10.4007/annals.2006.164.51

[11] M. Chudnovsky, I. Penev, A. Scott and N. Trotignon, Substitution and χ-boundedness, J. Combin. Theory Ser. B 103 (2013) 567–586. doi:10.1016/j.jctb.2013.02.004

[12] M. Conforti, G. Cornuéjols and K. Vušković, Even-hole-free graphs, Part II: Recognition algorithm, J. Graph Theory 40 (2002) 238–266. doi:10.1002/jgt.10045

[13] M. Conforti, G. Cornuéjols and K. Vušković, Decomposition of odd-hole-free graphs by double star cutsets and 2 -joins, Discrete Appl. Math. 141 (2004) 41–91. doi:10.1016/S0166-218X(03)00364-0

[14] M. Conforti, G. Cornuéjols, X. Liu and K. Vušković and G. Zambelli, Odd-hole recognition in graphs of bounded clique size, SIAM J. Discrete Math. 20 (2006) 42–48. doi:10.1137/S089548010444540X

[15] D.G. Corneil, H. Lerchs and L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174. doi:10.1016/0166-218X(81)90013-5

[16] T. Feder, P. Hell, S. Klein and R. Motwani, Complexity of graph partition problems, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (1999) 464-472. doi:10.1145/301250.301373

[17] T. Feder, P. Hell, S. Klein and R. Motwani, List partitions, SIAM J. Discrete Math. 16 (2003) 449–478. doi:10.1137/S0895480100384055

[18] S. Földes and P.L. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.

[19] M. Grötschel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325–356. doi:10.1016/s0304-0208(08)72943-8

[20] N.C. Lê, C. Brause and I. Schiermeyer, Extending the MAX Algorithm for maximum independent set, Discuss. Math. Graph Theory 35 (2015) 365–386. doi:10.7151/dmgt.1811

[21] R. Mosca, Stable sets for ( P6, K2,3) -free graphs, Discuss. Math. Graph Theory 32 (2012) 387–401. doi:10.7151/dmgt.1598

[22] D.B. West, Introduction to Graph Theory (Prentice Hall, USA, 1996).