On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 505-522.

Voir la notice de l'article provenant de la source Library of Science

Let ϕ (L(G)) = det(x I−L(G)) = Σ_k=0^n (−1)^k c_k (G) x^n−k be the Laplacian characteristic polynomial of G. In this paper, we characterize the minimal graphs with the minimum Laplacian coefficients in 𝒢_n,n+2 (i) (the set of all tricyclic graphs with fixed order n and matching number i). Furthermore, the graphs with the minimal Laplacian-like energy, which is the sum of square roots of all roots on ϕ (L(G)), is also determined in 𝒢_n,n+2 (i).
Keywords: Laplacian characteristic polynomial, Laplacian-like energy, tricyclic graph
@article{DMGT_2017_37_3_a0,
     author = {Luo, Jing and Zhu, Zhongxun and Wan, Runze},
     title = {On the {Laplacian} {Coefficients} of {Tricyclic} {Graphs} with {Prescribed} {Matching} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {505--522},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/}
}
TY  - JOUR
AU  - Luo, Jing
AU  - Zhu, Zhongxun
AU  - Wan, Runze
TI  - On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 505
EP  - 522
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/
LA  - en
ID  - DMGT_2017_37_3_a0
ER  - 
%0 Journal Article
%A Luo, Jing
%A Zhu, Zhongxun
%A Wan, Runze
%T On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 505-522
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/
%G en
%F DMGT_2017_37_3_a0
Luo, Jing; Zhu, Zhongxun; Wan, Runze. On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 505-522. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/

[1] B. Bollobás, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4

[2] J. Guo, On the second largest Laplacian eigenvalue of trees, Linear Algebra Appl. 404 (2005) 251–261. doi:10.1016/j.laa.2005.02.031

[3] C.-X. He and H.-Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Math. 310 (2010) 3404–3412. doi:10.1016/j.disc.2010.08.012

[4] A. Ilić, Trees with minimal Laplacian coefficients, Comput. Math. Appl. 59 (2010) 2776–2783. doi:10.1016/j.camwa.2010.01.047

[5] S. Li, X. Li and Z. Zhu, On tricyclic graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 397–419.

[6] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736–741. doi:10.1016/j.laa.2006.12.005

[7] X. Pai, S. Liu and J. Guo, On the Laplacian coefficients of tricyclic graphs, J. Math. Anal. Appl. 405 (2013) 200–208. doi:10.1016/j.jmaa.2013.03.059

[8] D. Stevanović and A. Ilić, On the Laplacian coefficients of unicyclic graphs, Linear Algebra Appl. 430 (2009) 2290–2300. doi:10.1016/j.laa.2008.12.006

[9] S. Tan, On the Laplacian coefficients of unicyclic graphs with prescribed matching number, Discrete Math. 311 (2011) 582–594. doi:10.1016/j.disc.2010.12.022

[10] S. Tan, On the Laplacian coefficients and Laplacian-like energy of bicyclic graphs, Linear Multilinear Algebra 60 (2012) 1071–1092. doi:10.1080/03081087.2011.643473

[11] D. Stevanović, Laplacian-like energy of trees, MATCH Commun. Math. Comput. Chem. 61 (2009) 407–417.