Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_3_a0, author = {Luo, Jing and Zhu, Zhongxun and Wan, Runze}, title = {On the {Laplacian} {Coefficients} of {Tricyclic} {Graphs} with {Prescribed} {Matching} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {505--522}, publisher = {mathdoc}, volume = {37}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/} }
TY - JOUR AU - Luo, Jing AU - Zhu, Zhongxun AU - Wan, Runze TI - On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 505 EP - 522 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/ LA - en ID - DMGT_2017_37_3_a0 ER -
%0 Journal Article %A Luo, Jing %A Zhu, Zhongxun %A Wan, Runze %T On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number %J Discussiones Mathematicae. Graph Theory %D 2017 %P 505-522 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/ %G en %F DMGT_2017_37_3_a0
Luo, Jing; Zhu, Zhongxun; Wan, Runze. On the Laplacian Coefficients of Tricyclic Graphs with Prescribed Matching Number. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 3, pp. 505-522. http://geodesic.mathdoc.fr/item/DMGT_2017_37_3_a0/
[1] B. Bollobás, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4
[2] J. Guo, On the second largest Laplacian eigenvalue of trees, Linear Algebra Appl. 404 (2005) 251–261. doi:10.1016/j.laa.2005.02.031
[3] C.-X. He and H.-Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Math. 310 (2010) 3404–3412. doi:10.1016/j.disc.2010.08.012
[4] A. Ilić, Trees with minimal Laplacian coefficients, Comput. Math. Appl. 59 (2010) 2776–2783. doi:10.1016/j.camwa.2010.01.047
[5] S. Li, X. Li and Z. Zhu, On tricyclic graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 397–419.
[6] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736–741. doi:10.1016/j.laa.2006.12.005
[7] X. Pai, S. Liu and J. Guo, On the Laplacian coefficients of tricyclic graphs, J. Math. Anal. Appl. 405 (2013) 200–208. doi:10.1016/j.jmaa.2013.03.059
[8] D. Stevanović and A. Ilić, On the Laplacian coefficients of unicyclic graphs, Linear Algebra Appl. 430 (2009) 2290–2300. doi:10.1016/j.laa.2008.12.006
[9] S. Tan, On the Laplacian coefficients of unicyclic graphs with prescribed matching number, Discrete Math. 311 (2011) 582–594. doi:10.1016/j.disc.2010.12.022
[10] S. Tan, On the Laplacian coefficients and Laplacian-like energy of bicyclic graphs, Linear Multilinear Algebra 60 (2012) 1071–1092. doi:10.1080/03081087.2011.643473
[11] D. Stevanović, Laplacian-like energy of trees, MATCH Commun. Math. Comput. Chem. 61 (2009) 407–417.