Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_2_a7, author = {L\^e, Ngoc C. and Brause, Christoph and Schiermeyer, Ingo}, title = {On {Sequential} {Heuristic} {Methods} for the {Maximum} {Independent} {Set} {Problem}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {415--426}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a7/} }
TY - JOUR AU - Lê, Ngoc C. AU - Brause, Christoph AU - Schiermeyer, Ingo TI - On Sequential Heuristic Methods for the Maximum Independent Set Problem JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 415 EP - 426 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a7/ LA - en ID - DMGT_2017_37_2_a7 ER -
%0 Journal Article %A Lê, Ngoc C. %A Brause, Christoph %A Schiermeyer, Ingo %T On Sequential Heuristic Methods for the Maximum Independent Set Problem %J Discussiones Mathematicae. Graph Theory %D 2017 %P 415-426 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a7/ %G en %F DMGT_2017_37_2_a7
Lê, Ngoc C.; Brause, Christoph; Schiermeyer, Ingo. On Sequential Heuristic Methods for the Maximum Independent Set Problem. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 415-426. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a7/
[1] V.E. Alekseev and V.V. Lozin, Augmenting graphs for independent sets, Discrete Appl. Math. 145 (2004) 3-10. doi: 10.1016/j.dam.2003.09.003
[2] P. Borowiecki, F. Göring, J. Harant and D. Rautenbach, The potential of greed for independence, J. Graph Theory 71 (2012) 245-259. doi: 10.1002/jgt.20644
[3] A. Brandstädt and V.V. Lozin, A note on -redundant vertices in graphs, Discrete Appl. Math. 108 (2001) 301-308. doi: 10.1016/S0166-218X(00)00239-0
[4] Y. Caro, New results on the independence, Technical Report, Tel-Aviv University (1979).
[5] M.U. Gerber and V.V. Lozin, On the stable set problem in special P5-free graphs, Discrete Appl. Math. 125 (2003) 215-224. doi: 10.1016/S0166-218X(01)00321-3
[6] J.R. Griggs, Lower bounds on the independence number in terms of the degrees, J. Combin. Theory Ser. B 34 (1983) 22-39. doi: 10.1016/0095-8956(83)90003-5
[7] J. Harant, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs and MIN-algorithm for independence number, Discrete Math. 256 (2002) 193-201. doi: 10.1016/S0012-365X(02)00571-X
[8] N.C. Lê, C. Brause and I. Schiermeyer, New sufficient conditions for -redundant vertices, Discrete Math. 338 (2015) 1674-1680. doi: 10.1016/j.disc.2014.07.002
[9] N.C. Lê, C. Brause and I. Schiermeyer, Extending the Max Algorithm for maximum independent set, Discuss. Math. Graph Theory 35 (2015) 365-386. doi: 10.7151/dmgt.1811
[10] V.V. Lozin and D. Rautenbach, Some results on graphs without long induced paths, Inform. Process. Lett. 88 (2003) 167-171. doi: 10.1016/j.ipl.2003.07.004
[11] N.V.R. Mahadev and B.A. Reed, A note on vertex orders for stability number, J. Graph Theory 30 (1999) 113-120. doi: 10.1002/(SICI)1097-0118(199902)30:2h113::AID-JGT5i3.0.CO;2-#
[12] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211. doi: 10.1016/0012-365X(91)90357-8
[13] D.J. Rose, R.E. Tarjan and G.S. Lueker, Algorithmic aspects of vertex elimination of graphs, SIAM J. Comput. 5 (1976) 266-283. doi: 10.1137/0205021
[14] V.K. Wei, A lower bound on the stability number of a simple graph, Technical Report, Bell Laboratories (1981).
[15] I.E. Zverovich, Minimum degree algorithms for stability number, Discrete Appl. Math. 132 (2004) 211-216. doi: 10.1016/S0166-218X(03)00402-5