Domination Game: Extremal Families for the 3/5-Conjecture for Forests
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 369-381

Voir la notice de l'article provenant de la source Library of Science

In the domination game on a graph G, the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated. This process eventually produces a dominating set of G; Dominator aims to minimize the size of this set, while Staller aims to maximize it. The size of the dominating set produced under optimal play is the game domination number of G, denoted by γ_g (G). Kinnersley, West and Zamani [SIAM J. Discrete Math. 27 (2013) 2090-2107] posted their 3/5-Conjecture that γ_g (G) ≤ 3/5 n for every isolate-free forest on n vertices. Brešar, Klavžar, Košmrlj and Rall [Discrete Appl. Math. 161 (2013) 1308-1316] presented a construction that yields an infinite family of trees that attain the conjectured 3/5-bound. In this paper, we provide a much larger, but simpler, construction of extremal trees. We conjecture that if G is an isolate-free forest on n vertices satisfying γ_g (G) = 3/5 n, then every component of G belongs to our construction.
Keywords: domination game, 3/5 conjecture
@article{DMGT_2017_37_2_a4,
     author = {Henning, Michael A. and L\"owenstein, Christian},
     title = {Domination {Game:} {Extremal} {Families} for the {3/5-Conjecture} for {Forests}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {369--381},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a4/}
}
TY  - JOUR
AU  - Henning, Michael A.
AU  - Löwenstein, Christian
TI  - Domination Game: Extremal Families for the 3/5-Conjecture for Forests
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 369
EP  - 381
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a4/
LA  - en
ID  - DMGT_2017_37_2_a4
ER  - 
%0 Journal Article
%A Henning, Michael A.
%A Löwenstein, Christian
%T Domination Game: Extremal Families for the 3/5-Conjecture for Forests
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 369-381
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a4/
%G en
%F DMGT_2017_37_2_a4
Henning, Michael A.; Löwenstein, Christian. Domination Game: Extremal Families for the 3/5-Conjecture for Forests. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 369-381. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a4/