Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_2_a1, author = {Borowiecka-Olszewska, Marta and Drgas-Burchardt, Ewa}, title = {Forbidden {Structures} for {Planar} {Perfect} {Consecutively} {Colourable} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {315--336}, publisher = {mathdoc}, volume = {37}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a1/} }
TY - JOUR AU - Borowiecka-Olszewska, Marta AU - Drgas-Burchardt, Ewa TI - Forbidden Structures for Planar Perfect Consecutively Colourable Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 315 EP - 336 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a1/ LA - en ID - DMGT_2017_37_2_a1 ER -
%0 Journal Article %A Borowiecka-Olszewska, Marta %A Drgas-Burchardt, Ewa %T Forbidden Structures for Planar Perfect Consecutively Colourable Graphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 315-336 %V 37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a1/ %G en %F DMGT_2017_37_2_a1
Borowiecka-Olszewska, Marta; Drgas-Burchardt, Ewa. Forbidden Structures for Planar Perfect Consecutively Colourable Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 2, pp. 315-336. http://geodesic.mathdoc.fr/item/DMGT_2017_37_2_a1/
[1] A.S. Asratian and C.J. Casselgren, On interval edge colorings of (α,ß)-biregular bipartite graphs, Discrete Math. 307 (2006) 1951-1956. doi: 10.1016/j.disc.2006.11.001
[2] A.S. Asratian and R.R. Kamalian, Interval colorings of the edges of multigraph, Appl. Math. 5 (1987) 25-34, in Russian.
[3] A.S. Asratian and R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B 62 (1994) 34-43. doi: 10.1006/jctb.1994.1053
[4] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002) 77-94.
[5] M. Borowiecka-Olszewska, E. Drgas-Burchardt and M. Ha luszczak, On the structure and deficiency of k-trees with bounded degree, Discrete Appl. Math. 201 (2016) 24-37. doi: 10.1016/j.dam.2015.08.008
[6] M. Borowiecka-Olszewska and E. Drgas-Burchardt, The deficiency of all generalized Hertz graphs and minimal consecutively non-colourable graphs in this class, Discrete Math. 339 (2016) 1892-1908. doi: 10.1016/j.disc.2015.12.028
[7] R. Diestel, Graph Theory, 2nd ed. (Graduate Texts in Mathematics 173, Springer-Verlag, New York, 2000).
[8] K. Giaro, The complexity of consecutive ∆-coloring of bipartite graphs: 4 is easy, 5 is hard, Ars Combin. 47 (1997) 287-300.
[9] K. Giaro and M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs, Congr. Numer. 128 (1997) 143-149.
[10] K. Giaro and M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103. doi: 0.1016/j.dam.2003.09.010
[11] K. Giaro, M. Kubale and M. Ma lafiejski, On the deficiency of bipartite graphs, Discrete Appl. Math. 94 (1999) 193-203. doi: 10.1016/S0166-218X(99)00021-9
[12] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, in: Proc. Of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man. 1973) 389-394.
[13] D. Hanson and C.O.M. Loten, A lower bound for interval colouring of bi-regular bipartite graphs, Bull. Inst. Comb. Appl. 18 (1996) 69-74.
[14] D. Hanson, C.O.M. Loten and B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50 (1998) 23-32.
[15] R.R. Kamalian, Interval Coloring of Complete Bipartite Graphs and Trees (in Russian) (Preprint of Comp. Cen. of Acad. Sci. of Armenian SSR, Erevan, 1989).
[16] M. Kubale, Graph Colorings (American Mathematical Society, Providence, Rhode Island, 2004). doi: 10.1090/conm/352
[17] P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010) 1580-1587. doi: 10.1016/j.disc.2010.02.001
[18] P.A. Petrosyan, Interval edge colorings of some products of graphs, Discuss. Math. Graph Theory 31 (2011) 357-373. doi: 10.7151/dmgt.1551
[19] P.A. Petrosyan, H.H. Khachatrian and H.G. Tananyan, Interval edge-colorings of Cartesian products of graphs I, Discuss. Math. Graph Theory 33 (2013) 613-632. doi: 10.7151/dmgt.1693
[20] P.A. Petrosyan and H.H. Khachatrian, Interval non-edge-colorable bipartite graphs and multigraphs, J. Graph Theory 76 (2014) 200-216. doi: 10.1002/jgt.21759
[21] A.V. Pyatkin, Interval coloring of (3, 4)-biregular bipartite graphs having large cubic subgraphs, J. Graph Theory 47 (2004) 122-128. doi: 0.1002/jgt.20021
[22] S.V. Sevastjanov, On interval colorability of bipartite graphs, Met. Diskret Analiz. 50 (1990) 61-72, in Russian.