Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a7, author = {Baudon, Olivier and Bensmail, Julien and Foucaud, Florent and Pil\'sniak, Monika}, title = {Structural {Properties} of {Recursively} {Partitionable} {Graphs} with {Connectivity} 2}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {89--115}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a7/} }
TY - JOUR AU - Baudon, Olivier AU - Bensmail, Julien AU - Foucaud, Florent AU - Pilśniak, Monika TI - Structural Properties of Recursively Partitionable Graphs with Connectivity 2 JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 89 EP - 115 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a7/ LA - en ID - DMGT_2017_37_1_a7 ER -
%0 Journal Article %A Baudon, Olivier %A Bensmail, Julien %A Foucaud, Florent %A Pilśniak, Monika %T Structural Properties of Recursively Partitionable Graphs with Connectivity 2 %J Discussiones Mathematicae. Graph Theory %D 2017 %P 89-115 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a7/ %G en %F DMGT_2017_37_1_a7
Baudon, Olivier; Bensmail, Julien; Foucaud, Florent; Pilśniak, Monika. Structural Properties of Recursively Partitionable Graphs with Connectivity 2. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 89-115. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a7/
[1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002) 205–216. doi:10.1016/S0166-218X(00)00322-X
[2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469–477. doi:10.1016/j.disc.2006.01.006
[3] O. Baudon, F. Foucaud, J. Przyby lo and M. Woźniak, On the structure of arbitrarily partitionable graphs with given connectivity, Discrete Appl. Math. 162 (2014) 381–385. doi:10.1016/j.dam.2013.09.007
[4] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex-decomposable suns, Opuscula Math. 31 (2011) 533–547. doi:10.7494/OpMath.2011.31.4.533
[5] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex-decomposable graphs, Opuscula Math. 32 (2012) 689–706. doi:10.7494/OpMath.2012.32.4.689
[6] J. Bensmail, On the longest path in a recursively partitionable graph, Opuscula Math. 33 (2013) 631–640. doi:10.7494/OpMath.2013.33.4.631
[7] S. Cichacz, A. Görlich, A. Marczyk, J. Przyby lo and M. Woźniak, Arbitrarily vertex decomposable caterpillars with four or five leaves, Discuss. Math. Graph Theory 26 (2006) 291–305. doi:10.7151/dmgt.1321
[8] R. Diestel, Graph Theory (Springer, Berlin Heidelberg, 2005).
[9] E. Győri, On division of graphs to connected subgraphs, in: Combinatorics, Proc. Fifth Hungariam Colloq., Keszthely, 1976, Vol. I, Colloq. Math. Soc. János Bolyai 18 (1978) 485–494.
[10] M. Horňák, Zs. Tuza and M. Woźniak, On-line arbitrarily vertex decomposable trees, Discrete Appl. Math. 155 (2007) 1420–1429. doi:10.1016/j.dam.2007.02.011
[11] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003) 49–62.
[12] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Hungar. 30 (1977) 241–251.
[13] A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009) 3588–3594. doi:10.1016/j.disc.2007.12.066