Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a6, author = {Hexel, Erhard}, title = {On the {H} {-Force} {Number} of {Hamiltonian} {Graphs} and {Cycle} {Extendability}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {79--88}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/} }
Hexel, Erhard. On the H -Force Number of Hamiltonian Graphs and Cycle Extendability. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/
[1] A. Abueida and R. Sritharan, Cycle extendability and Hamiltonian cycles in chordal graph classes, SIAM J. Discrete Math. 20 (2006) 669–681. doi:10.1137/S0895480104441267
[2] G. Chen, R.J. Faudree, R.J. Gould and M.S. Jacobson, Cycle extendability of Hamiltonian interval graphs, SIAM J. Discrete Math. 20 (2006) 682–689. doi:10.1137/S0895480104441450
[3] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2005).
[4] I. Fabrici, E. Hexel and S. Jendrol’, On vertices enforcing a Hamiltonian cycle, Discuss. Math. Graph Theory 33 (2013) 71–89. doi:10.7151/dmgt.1653
[5] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990) 59–72. doi:10.1016/0012-365X(90)90163-C
[6] T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math. 257 (2002) 441–444. doi:10.1016/S0012-365X(02)00505-8
[7] R. Li, X. Zhang, S. Li, Q. Guo and Y. Guo, The H-force set of a hypertournament, Discrete Appl. Math. 169 (2014) 168–175. doi:10.1016/j.dam.2013.12.020
[8] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[9] M. Timková, Enforced Hamiltonian cycles in generalized dodecahedra, Electron. J. Graph Theory Appl. 1 (2013) 77–88. doi:10.5614/ejgta.2013.1.2.1
[10] X. Zhang, R. Li and S. Li, H-force sets of locally semicomplete digraphs, Discrete Appl. Math. 160 (2012) 2491–2496. doi:10.1016/j.dam.2012.06.014