On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 79-88.

Voir la notice de l'article provenant de la source Library of Science

The H-force number h(G) of a hamiltonian graph G is the smallest cardinality of a set A ⊆ V (G) such that each cycle containing all vertices of A is hamiltonian. In this paper a lower and an upper bound of h(G) is given. Such graphs, for which h(G) assumes the lower bound are characterized by a cycle extendability property. The H-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula.
Keywords: cycle, hamiltonian graph, H -force number, cycle extendability
@article{DMGT_2017_37_1_a6,
     author = {Hexel, Erhard},
     title = {On the {H} {-Force} {Number} of {Hamiltonian} {Graphs} and {Cycle} {Extendability}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/}
}
TY  - JOUR
AU  - Hexel, Erhard
TI  - On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 79
EP  - 88
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/
LA  - en
ID  - DMGT_2017_37_1_a6
ER  - 
%0 Journal Article
%A Hexel, Erhard
%T On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 79-88
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/
%G en
%F DMGT_2017_37_1_a6
Hexel, Erhard. On the H -Force Number of Hamiltonian Graphs and Cycle Extendability. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/

[1] A. Abueida and R. Sritharan, Cycle extendability and Hamiltonian cycles in chordal graph classes, SIAM J. Discrete Math. 20 (2006) 669–681. doi:10.1137/S0895480104441267

[2] G. Chen, R.J. Faudree, R.J. Gould and M.S. Jacobson, Cycle extendability of Hamiltonian interval graphs, SIAM J. Discrete Math. 20 (2006) 682–689. doi:10.1137/S0895480104441450

[3] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2005).

[4] I. Fabrici, E. Hexel and S. Jendrol’, On vertices enforcing a Hamiltonian cycle, Discuss. Math. Graph Theory 33 (2013) 71–89. doi:10.7151/dmgt.1653

[5] G.R.T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990) 59–72. doi:10.1016/0012-365X(90)90163-C

[6] T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math. 257 (2002) 441–444. doi:10.1016/S0012-365X(02)00505-8

[7] R. Li, X. Zhang, S. Li, Q. Guo and Y. Guo, The H-force set of a hypertournament, Discrete Appl. Math. 169 (2014) 168–175. doi:10.1016/j.dam.2013.12.020

[8] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[9] M. Timková, Enforced Hamiltonian cycles in generalized dodecahedra, Electron. J. Graph Theory Appl. 1 (2013) 77–88. doi:10.5614/ejgta.2013.1.2.1

[10] X. Zhang, R. Li and S. Li, H-force sets of locally semicomplete digraphs, Discrete Appl. Math. 160 (2012) 2491–2496. doi:10.1016/j.dam.2012.06.014