On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 79-88

Voir la notice de l'article provenant de la source Library of Science

The H-force number h(G) of a hamiltonian graph G is the smallest cardinality of a set A ⊆ V (G) such that each cycle containing all vertices of A is hamiltonian. In this paper a lower and an upper bound of h(G) is given. Such graphs, for which h(G) assumes the lower bound are characterized by a cycle extendability property. The H-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula.
Keywords: cycle, hamiltonian graph, H -force number, cycle extendability
@article{DMGT_2017_37_1_a6,
     author = {Hexel, Erhard},
     title = {On the {H} {-Force} {Number} of {Hamiltonian} {Graphs} and {Cycle} {Extendability}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/}
}
TY  - JOUR
AU  - Hexel, Erhard
TI  - On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 79
EP  - 88
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/
LA  - en
ID  - DMGT_2017_37_1_a6
ER  - 
%0 Journal Article
%A Hexel, Erhard
%T On the H -Force Number of Hamiltonian Graphs and Cycle Extendability
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 79-88
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/
%G en
%F DMGT_2017_37_1_a6
Hexel, Erhard. On the H -Force Number of Hamiltonian Graphs and Cycle Extendability. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a6/