Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a19, author = {Kuziak, Dorota and Rodr{\'\i}guez-Vel\'azquez, Juan A. and Yero, Ismael G.}, title = {Computing the {Metric} {Dimension} of a {Graph} from {Primary} {Subgraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {273--293}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a19/} }
TY - JOUR AU - Kuziak, Dorota AU - Rodríguez-Velázquez, Juan A. AU - Yero, Ismael G. TI - Computing the Metric Dimension of a Graph from Primary Subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 273 EP - 293 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a19/ LA - en ID - DMGT_2017_37_1_a19 ER -
%0 Journal Article %A Kuziak, Dorota %A Rodríguez-Velázquez, Juan A. %A Yero, Ismael G. %T Computing the Metric Dimension of a Graph from Primary Subgraphs %J Discussiones Mathematicae. Graph Theory %D 2017 %P 273-293 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a19/ %G en %F DMGT_2017_37_1_a19
Kuziak, Dorota; Rodríguez-Velázquez, Juan A.; Yero, Ismael G. Computing the Metric Dimension of a Graph from Primary Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 273-293. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a19/
[1] L. Barriȩre, F. Comellas, C. Dalfó and M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36–48. doi:10.1016/j.dam.2008.04.018
[2] L.M. Blumenthal, Theory and Applications of Distance Geometry, Second Edition (Chelsea Publishing Co., New York, 1970).
[3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math. 21 (2007) 423–441. doi:10.1137/050641867
[4] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113. doi:10.1016/S0166-218X(00)00198-0
[5] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 19–28. doi:10.1016/S0898-1221(00)00126-7
[6] E. Deutsch and S. Klavžar, Computing the Hosoya polynomials of graphs from primary subgraphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 627–644.
[7] E. Deutsch and J.A. Rodríguez-Velázquez, The terminal Hosoya polynomial of some families of composite graphs, Int. J. Com. 2014 (2014) Art. ID 696507. doi:10.1155/2014/696507
[8] J. Díaz, O. Pottonen, M. Serna and E. Jan van Leeuwen, On the complexity of metric dimension, Lecture Notes in Comput. Sci. 7501 (2012) 419–430. doi:10.1007/978-3-642-33090-2_37
[9] D. Eppstein, Metric dimension parameterized by max leaf number, J. Graph Algorithms Appl. 19 (2015) 313–323. doi:10.7155/jgaa.00360
[10] M. Feng and K. Wang, On the metric dimension and fractional metric dimension of the hierarchical product of graphs, Appl. Anal. Discrete Math. 7 (2013) 302–313. doi:10.2298/AADM130521009F
[11] H. Fernau, P. Heggernes, P. van’t Hof, D. Meister and R. Saei, Computing the metric dimension for chain graphs, Inform. Process. Lett. 115 (2015) 671–676. doi:10.1016/j.ipl.2015.04.006
[12] H. Fernau and J.A. Rodríguez-Velázquez, On the ( adjacency ) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results, arXiv:1309.2275 [math.CO] (2013).
[13] H. Fernau and J.A. Rodríguez-Velázquez, Notions of metric dimension of corona products: Combinatorial and computational results, Lecture Notes in Comput. Sci. 8476 (2014) 153–166. doi:10.1007/978-3-319-06686-8_12
[14] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. doi:10.1007/BF01844162
[15] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York NY, USA, 1979).
[16] C.D. Godsil and B.D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1978) 21–28. doi:10.1017/S0004972700007760
[17] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[18] S. Hartung and A. Nichterlein, On the parameterized and approximation hardness of metric dimension, in: Proceedings of the IEEE Conference on Computational Complexity, Stanford, California, USA (2013) 266–276.
[19] H. Iswadi, E.T. Baskoro and R. Simanjuntak, On the metric dimension of corona product of graphs, Far East J. Math. Sci. 52 (2011) 155–170.
[20] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math. 312 (2012) 3349–3356. doi:10.1016/j.disc.2012.07.025
[21] J.A. Rodríguez-Velázquez, C. García Gómez and G.A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Int. J. Comput. Math. 92 (2015) 686–693. doi:10.1080/00207160.2014.918608
[22] J.A. Rodríguez-Velázquez, D. Kuziak, I.G. Yero and J.M. Sigarreta, The metric dimension of strong product graphs, Carpathian J. Math. 31 (2015) 261–268.
[23] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman and M. Bača, The metric dimension of the lexicographic product of graphs, Discrete Math. 313 (2013) 1045–1051. doi:10.1016/j.disc.2013.01.021
[24] A.J. Schwenk, Computing the characteristic polynomial of a graph, Lecture Notes in Math. 406 (1974) 153–172. doi:10.1007/BFb0066438
[25] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393. doi:10.1287/moor.1030.0070
[26] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
[27] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988) 445–455.
[28] I.G. Yero, D. Kuziak and J.A. Rodríquez-Velázquez, On the metric dimension of corona product graphs, Comput. Math. Appl. 61 (2011) 2793–2798. doi:10.1016/j.camwa.2011.03.046