Signed Total Roman Domination in Digraphs
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 261-272.

Voir la notice de l'article provenant de la source Library of Science

Let D be a finite and simple digraph with vertex set V (D). A signed total Roman dominating function (STRDF) on a digraph D is a function f : V (D) →−1, 1, 2 satisfying the conditions that (i) Σ_x ∈ N^− (v) f(x) ≥ 1 for each v ∈ V (D), where N^− (v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight of an STRDF f is w(f) = Σ_ v ∈ V (D) f(v). The signed total Roman domination number γ_stR (D) of D is the minimum weight of an STRDF on D. In this paper we initiate the study of the signed total Roman domination number of digraphs, and we present different bounds on γ_stR (D). In addition, we determine the signed total Roman domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed total Roman domination number γ_stR (G) of graphs G.
Keywords: digraph, signed total Roman dominating function, signed total Roman domination number
@article{DMGT_2017_37_1_a18,
     author = {Volkmann, Lutz},
     title = {Signed {Total} {Roman} {Domination} in {Digraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {261--272},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a18/}
}
TY  - JOUR
AU  - Volkmann, Lutz
TI  - Signed Total Roman Domination in Digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 261
EP  - 272
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a18/
LA  - en
ID  - DMGT_2017_37_1_a18
ER  - 
%0 Journal Article
%A Volkmann, Lutz
%T Signed Total Roman Domination in Digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 261-272
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a18/
%G en
%F DMGT_2017_37_1_a18
Volkmann, Lutz. Signed Total Roman Domination in Digraphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 261-272. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a18/

[1] S. Arumugam, K. Jacop and L. Volkmann, Total and connected domination in digraphs, Australas. J. Combin. 39 (2007) 283–292.

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Editors, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[4] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004) 109–125. doi:10.1016/j.disc.2003.06.002

[5] E. Shan and T.C.E. Cheng, Remarks on the minus ( signed ) total domination in graphs, Discrete Math. 308 (2008) 3373–3380. doi:10.1016/j.disc.2007.06.015

[6] S.M. Sheikholeslami, Signed total domination numbers of directed graphs, Util.Math. 85 (2011) 213–218.

[7] S.M. Sheikholeslami and L. Volkmann, The Roman domination number of a digraph Acta Univ. Apulensis Math. Inform. 27 (2011) 77–96.

[8] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871. doi 10.1007/s10878-015-9906-6

[9] B. Zelinka, Signed total domination numbers of a graph, Czechoslovak Math. J. 51 (2001) 225–229. doi:10.1023/A:1013782511179