Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a15, author = {Javier, Nahid and Llano, Bernardo}, title = {The {Dichromatic} {Number} of {Infinite} {Families} of {Circulant} {Tournaments}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {221--238}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/} }
TY - JOUR AU - Javier, Nahid AU - Llano, Bernardo TI - The Dichromatic Number of Infinite Families of Circulant Tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 221 EP - 238 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/ LA - en ID - DMGT_2017_37_1_a15 ER -
Javier, Nahid; Llano, Bernardo. The Dichromatic Number of Infinite Families of Circulant Tournaments. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 221-238. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/
[1] G. Araujo-Pardo and M. Olsen, A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments, Discrete Math. 310 (2010) 489–492. doi:10.1016/j.disc.2009.03.028
[2] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Second Edition (Springer Monographs in Mathematics, Springer-Verlag London, London, 2009).
[3] P. Erdős, Problems and results in number theory and graph theory, Proceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1979), Congr. Numer. XXVII (1979) 3–21.
[4] P. Erdős, J. Gimbel and D. Kratsch, Some extremal results in cochromatic and dichromatic theory, J. Graph Theory 15 (1991) 579–585. doi:10.1002/jgt.3190150604
[5] A. Harutyunyan, Brooks-type results for coloring of digraphs, PhD thesis supervised by B. Mohar (Simon Fraser University, 2011). http://www.math.univ-toulouse.fr/~aharutyu/thes-short.pdf
[6] H. Jacob and H. Meyniel, Extensions of Turan’s and Brooks theorem and new notions of stability and colouring in digraphs, Ann. Discrete Math. 17 (1983) 365–370.
[7] B. Llano and M. Olsen, On a conjecture of Víctor Neumann-Lara, Electron. Notes Discrete Math. 30 (2008) 207–212. doi:10.1016/j.endm.2008.01.036
[8] B. McKay, Combinatorial Data, published online. http://cs.anu.edu.au/~bdm/data
[9] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory, Ser. B 33 (1982) 265–270. doi:10.1016/0095-8956(82)90046-6
[10] V. Neumann-Lara, The 3 and 4 -dichromatic tournaments of minimum order, Discrete Math. 135 (1994) 233–243. doi:10.1016/0012-365X(93)E0113-I
[11] V. Neumann-Lara, Vertex critical 4 -dichromatric circulant tournaments, Discrete Math. 170 (1997) 289–291. doi:10.1016/S0012-365X(96)00128-8
[12] V. Neumann-Lara, Dichromatic number, circulant tournaments and Zykov sums of digraphs, Discuss. Math. Graph Theory 20 (2000) 197–207. doi:10.7151/dmgt.1119
[13] V. Neumann-Lara and J. Urrutia, Vertex critical r-dichromatric tournaments, Discrete Math. 49 (1984) 83–87. doi:10.1016/0012-365X(84)90154-7