The Dichromatic Number of Infinite Families of Circulant Tournaments
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 221-238

Voir la notice de l'article provenant de la source Library of Science

The dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T= C⃗_2n+1(1,2,…,n), where V (T) = ℤ_2n+1 and for every jump j ∈1, 2, . . ., n there exist the arcs (a, a + j) for every a ∈ℤ_2n+1. Consider the circulant tournament C⃗_2n+1 〈k〉 obtained from the cyclic tournament by reversing one of its jumps, that is, C⃗_2n+1 〈k〉 has the same arc set as C⃗_2n+1 (1,2,…,n) except for j = k in which case, the arcs are (a, a − k) for every a ∈ℤ_2n+1. In this paper, we prove that dc (C⃗_2n+1 〈k〉 ) ∈2,3,4 for every k ∈1, 2, . . ., n. Moreover, we classify which circulant tournaments C⃗_2n+1 〈k〉 are vertex-critical r-dichromatic for every k ∈1, 2, . . ., n and r ∈2, 3, 4. Some previous results by Neumann-Lara are generalized.
Keywords: tournament, dichromatic number, vertex-critical r -dichromatic tournament
@article{DMGT_2017_37_1_a15,
     author = {Javier, Nahid and Llano, Bernardo},
     title = {The {Dichromatic} {Number} of {Infinite} {Families} of {Circulant} {Tournaments}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {221--238},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/}
}
TY  - JOUR
AU  - Javier, Nahid
AU  - Llano, Bernardo
TI  - The Dichromatic Number of Infinite Families of Circulant Tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 221
EP  - 238
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/
LA  - en
ID  - DMGT_2017_37_1_a15
ER  - 
%0 Journal Article
%A Javier, Nahid
%A Llano, Bernardo
%T The Dichromatic Number of Infinite Families of Circulant Tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 221-238
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/
%G en
%F DMGT_2017_37_1_a15
Javier, Nahid; Llano, Bernardo. The Dichromatic Number of Infinite Families of Circulant Tournaments. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 221-238. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a15/