Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a14, author = {Bensmail, Julien}, title = {On {q-Power} {Cycles} in {Cubic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {211--220}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a14/} }
Bensmail, Julien. On q-Power Cycles in Cubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 211-220. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a14/
[1] P. Erdős, Some old and new problems in various branches of combinatorics, Discrete Math. 165/166 (1997) 227–231. doi:10.1016/S0012-365X(96)00173-2
[2] D. Daniel and S.E. Shauger, A result on the Erdős-Gyárfás conjecture in planar graphs, Congr. Numer. 153 (2001) 129–139.
[3] C.C. Heckman and R. Krakovski, Erdős-Gyárfás conjecture for cubic planar graphs, Electron. J. Combin. 20 (2013) #P7.
[4] K. Markström, Extremal graphs for some problems on cycles in graphs, Congr. Numer. 171 (2004) 179–192.
[5] P.S. Nowbandegani, H. Esfandiari, M.H.S. Haghighi and K. Bibak, On the Erdős-Gyárfás conjecture in claw-free graphs, Discuss. Math. Graph Theory 34 (2014) 635–640. doi:10.7151/dmgt.1732
[6] S.E. Shauger, Results on the Erdős-Gyárfás conjecture in K1,m-free graphs, Congr. Numer. 134 (1998) 61–65.
[7] D. West, Erdős-Gyárfás conjecture on 2 -power cycle lengths, Open Problems—Graph Theory and Combinatorics. http://www.math.illinois.edu/~dwest/openp/2powcyc.html