Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2017_37_1_a13, author = {Belkhechine, Houmem and Ille, Pierre and Woodrow, Robert E.}, title = {Criticality of {Switching} {Classes} of {Reversible} {2-Structures} {Labeled} by an {Abelian} {Group}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {175--209}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a13/} }
TY - JOUR AU - Belkhechine, Houmem AU - Ille, Pierre AU - Woodrow, Robert E. TI - Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group JO - Discussiones Mathematicae. Graph Theory PY - 2017 SP - 175 EP - 209 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a13/ LA - en ID - DMGT_2017_37_1_a13 ER -
%0 Journal Article %A Belkhechine, Houmem %A Ille, Pierre %A Woodrow, Robert E. %T Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group %J Discussiones Mathematicae. Graph Theory %D 2017 %P 175-209 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a13/ %G en %F DMGT_2017_37_1_a13
Belkhechine, Houmem; Ille, Pierre; Woodrow, Robert E. Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 175-209. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a13/
[1] P. Bonizzoni, Primitive 2 -structures with the ( n − 2) -property, Theoret. Comput. Sci. 132 (1994) 151–178. doi:10.1016/0304-3975(94)90231-3
[2] Y. Boudabous and P. Ille, Indecomposability graph and critical vertices of an indecomposable graph, Discrete Math. 309 (2009) 2839–2846. doi:10.1016/j.disc.2008.07.015
[3] Y. Cheng and A.L. Wells, Switching classes of directed graphs, J. Combin. Theory Ser. B 40 (1986) 169–186. doi:10.1016/0095-8956(86)90075-4
[4] A. Cournier and P. Ille, Minimal indecomposable graph, Discrete Math. 183 (1998) 61–80. doi:10.1016/S0012-365X(97)00077-0
[5] A. Ehrenfeucht, T. Harju and G. Rozenberg, The Theory of 2-Structures, A Framework for Decomposition and Transformation of Graphs (World Scientific, 1999). doi:10.1142/4197
[6] A. Ehrenfeucht and G. Rozenberg, Theory of 2 -structures, Part I: clans, basic subclasses, and morphisms, Theoret. Comput. Sci. 70 (1990) 277–303. doi:10.1016/0304-3975(90)90129-6
[7] A. Ehrenfeucht and G. Rozenberg, Primitivity is hereditary for 2 -structures, Theoret. Comput. Sci. 70 (1990) 343–358.
[8] P. Ille, Recognition problem in reconstruction for decomposable relations, in: Finite and Infinite Combinatorics in Sets and Logic, B. Sands, N. Sauer and R. Woodrow (Ed(s)), (Kluwer Academic Publishers, 1993) 189–198. doi:10.1007/978-94-011-2080-7_13
[9] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71–78. doi:10.1016/S0012-365X(96)00097-0
[10] P. Ille and R. Woodrow, Decomposition tree of a lexicographic product of binary structures, Discrete Math. 311 (2011) 2346–2358. doi:10.1016/j.disc.2011.05.037
[11] J.H. Schmerl and W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191–205. doi:10.1016/0012-365X(93)90516-V
[12] J.J. Seidel, Strongly regular graphs of L 2 type and of triangular type, in: Proc. Kon. Nederl. Akad. Wetensch. Ser. A (Indag. Math. 29, 1967) 188–196. doi:10.1016/S1385-7258(67)50031-8