Rainbow Connection Number of Graphs with Diameter 3
Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 141-154.

Voir la notice de l'article provenant de la source Library of Science

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.
Keywords: edge-coloring, rainbow path, rainbow connection number, diameter
@article{DMGT_2017_37_1_a10,
     author = {Li, Hengzhe and Li, Xueliang and Sun, Yuefang},
     title = {Rainbow {Connection} {Number} of {Graphs} with {Diameter} 3},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a10/}
}
TY  - JOUR
AU  - Li, Hengzhe
AU  - Li, Xueliang
AU  - Sun, Yuefang
TI  - Rainbow Connection Number of Graphs with Diameter 3
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2017
SP  - 141
EP  - 154
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a10/
LA  - en
ID  - DMGT_2017_37_1_a10
ER  - 
%0 Journal Article
%A Li, Hengzhe
%A Li, Xueliang
%A Sun, Yuefang
%T Rainbow Connection Number of Graphs with Diameter 3
%J Discussiones Mathematicae. Graph Theory
%D 2017
%P 141-154
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a10/
%G en
%F DMGT_2017_37_1_a10
Li, Hengzhe; Li, Xueliang; Sun, Yuefang. Rainbow Connection Number of Graphs with Diameter 3. Discussiones Mathematicae. Graph Theory, Tome 37 (2017) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/DMGT_2017_37_1_a10/

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number and radius, Graphs Combin. 30 (2014) 275–285. doi:10.1007/s00373-012-1267-7

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (New York, Springer, 2008). doi:10.1007/978-1-84628-970-5

[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330–347. doi:10.1007/s10878-009-9250-9

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.

[5] X. Huang, H. Li, X. Li and Y. Sun, Oriented diameter and rainbow connection number of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 51–60.

[6] X. Huang, X. Li, Y. Shi, J. Yue and Y. Zhao, Rainbow connections for outerplanar graphs with diameter 2 and 3, Appl. Math. Comput. 242 (2014) 277–280. doi:10.1016/j.amc.2014.05.066

[7] H. Li, X. Li, and S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012) 1453–1457. doi:10.1016/j.disc.2012.01.009

[8] X. Li and Y. Sun, Rainbow Connections of Graphs (New York, Springer, 2012). doi:10.1007/978-1-4614-3119-0